

HAI*BAS

REFERENCE

MANUAL

COPYRIGHT NOTICE

This manual describes a proprietary product of OVAL SOFTWARE.

Copyright (C) 1994 - 2010. All rights reserved.

OVAL SOFTWARE has taken care to ensure that the contents of this manual are accurate,
but cannot be held responsible for the consequences of any inaccuracies.

OVAL SOFTWARE reserves the right to change the product specification as a result of our
policy of continued product development.

HAI*LINE, START*LINE and HAI*EUROP are registered trademarks of HOLLAND
AUTOMATION INTERNATIONAL

Last revision – April 2010

 Table of contents April 2010

HAIBAS.63x OVAL SOFTWARE Page : i

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. LANGUAGE FEATURES .. 3
2.1. INTRODUCTION ... 3
2.2. EXPRESSIONS ... 5
2.3. FILE MANAGEMENT AND PERIPHERAL DRIVERS ... 10
2.4. BASIC EDITOR ... 11
2.5. SYNTAX CONVENTIONS .. 12
2.6. SUBROUTINES, ROUTINES AND FUNCTIONS ... 14

2.6.1. HAI*BAS program environment ... 14
2.6.2. Parameter passing .. 17
2.6.3. Parameter list ... 21

2.7. ALPHABETICAL LIST OF LANGUAGE FEATURES ... 23
@ function ... 24
ABS function ... 25
ACCEPT statement ... 26
ASC function ... 30
BB function ... 31
BD function ... 32
BEGIN statement .. 33
BI function ... 34
BM function ... 35
BS function ... 36
BU function ... 37
BV function ... 38
CALL statement .. 39
CF function.. 40
CH function ... 41
CHAIN statement .. 42
CHR function .. 43
CLEAR statement ... 44
CLOSE statement ... 45
COLUMN function .. 46
COMMON statement ... 47
COMMON() function ... 48
COMMON area members ... 49
COMMON CLEAR statement ... 51
COMMON END statement .. 52
COMPARE() function ... 53
COMPAREMASK() function ... 54
CONTROL function (file) .. 56
CONTROL function (screen) ... 57
CR function ... 58
CS function ... 59
DATA statement ... 60
DELETE statement (record) ... 62
DELETE statetement (index) ... 63
DIM statement ... 64
DIMOF() function .. 66
DISABLE statement .. 67

 Table of contents April 2010

HAIBAS.63x OVAL SOFTWARE Page : ii

EB function ... 68
ED function ... 69
EDIT command ... 70
EI function ... 71
EM function ... 72
ENABLE statement ... 73
END statement .. 74
ENTRY statement ... 75
ERR function ... 78
EU function ... 79
EV function.. 80
EXIT statement ... 81
FF function .. 83
FOR and NEXT statements .. 84
FREE function ... 86
FUNC , FUNC$ statement .. 87
GET statement (file) .. 88
GET statement (screen) ... 89
GO command .. 90
GOSUB statement .. 91
GOTO statement ... 92
HELP system variable .. 93
HT function.. 94
IF ... GOTO statement ... 95
IF ... THEN statement .. 96
INPUT statement ... 97
INSERT statement (file) .. 98
INSERT statement (screen) ... 99
LEN function ... 102
LF function .. 104
LINE function .. 105
LIST command .. 106
LKEY function ... 107
LOAD command and statement .. 108
LOCAL DIM statement ... 109
LOCAL OPEN statement .. 110
MOD function .. 111
MVER$ system variable ... 112
NARG system function .. 113
NEXT statement .. 114
NEW command ... 115
NL function.. 116
ON ERROR GOTO / GOSUB statement .. 117
ON ESCAPE GOSUB statement .. 118
ON ... GOSUB statement .. 120
ON ... GOTO statement .. 121
ON OVERFLOW GOSUB .. 122
ON RECEIVE GOSUB ... 123
OPEN statement ... 124
PASS system variable .. 126
PASS$ system variable .. 127
POS function ... 128
PRINT STATEMENT (device / file) ... 129
PRINT statement (screen) .. 130
PUT statement (file) .. 131

 Table of contents April 2010

HAIBAS.63x OVAL SOFTWARE Page : iii

PUT statement (function keys) .. 132
PUT statement (screen) ... 133
PUT statement (keyboard) ... 134
PUT(MODE=97) statement ... 135
PUT(MODE=99) statement ... 136
RB function ... 137
READ statement ... 138
REM statement ... 140
RESET statement ... 141
RESTORE statement .. 142
RETURN statement .. 143
RND function .. 144
RUN command .. 145
SAVE command .. 146
SB function ... 147
SF function .. 148
SGN function .. 149
SHOW command .. 150
STACK command ... 153
STATUS function .. 154
STOP statement .. 155
STR function ... 156
TRACE statement ... 157
USER system variable ... 158
VAL function ... 159
VER function ... 160
VER$ function ... 161
WRITE statement (file) ... 162
WRITE statement (screen) ... 164

3. DRIVERS .. 165
3.1. $CRT driver ... 167
3.2. $DLK driver ... 170
3.3. $FILE driver ... 171
3.4. $HOST driver... 172
3.5. $LPT driver .. 183
3.6. $NULL driver ... 188
3.7. $SPL driver .. 189

4. NATIVE FUNCTIONS ... 190
4.1. $COMPARE Function ... 191
4.2. $SORT Routine ... 193

5. SYSTEM PARAMETERS ... 194
5.1. Parameter file HAI.PAR .. 194

5.1.1. General parameters ... 195
DEBUG= option .. 197
FKEY() option.. 199
FUNC option ... 200
GUIDE and EXPLAIN options .. 201
HELPOPT option .. 203
HELPPATH option .. 204

 Table of contents April 2010

HAIBAS.63x OVAL SOFTWARE Page : iv

MINFREE option ... 205
OUT_FF option ... 206
RETRYWIN option .. 208
SWAPPATH option ... 209
USERID option .. 210

5.1.2. Disk(ette) unit parameters .. 211
5.1.3. Serial communicaton parameters .. 213
5.1.4. Display/keyboard parameters .. 214
5.1.5. Printer parameters ... 220

5.2. Parameter file USERID.PAR... 222
5.3. Systemfile HAISHARE .. 224

6. FILE STRUCTURE ... 225
6.1. File overview ... 225
6.2. Direct files ... 227
6.3. Indexed files .. 228

7. IN GENERAL .. 229

8. HELPFILES ... 230

9. UTILITIES .. 231

10. ERROR CODES ... 232
10.1. Introduction ... 232
10.2. Error handling ... 233
10.3. Error message format .. 235
10.4. HAI*Basic error codes.. 236
10.5. Start-up error codes ... 237

 Introduction April 2010

HAIBAS.63x OVAL SOFTWARE Page : 1

1. INTRODUCTION

Business Basic HAI*Basic is designed to meet the requirements of business

applications. It contains many easy-to-use facilities to realise
high-quality applications.

Highlights Easy-to-use display and keyboard control statements with a full

range of options are available to control color displays and for
keyboard input validation (see the ACCEPT statement).

 Accurate computation with a large number of decimals when

needed.

 At the same time the variables occupy the smallest possible

space by defining the length for every individual variable (see
the DIM statement). This provides for very efficient use of both
internal memory and disk space.

 HAI*Basic has a set of statements to provide for easy access to

peripherals and files. These features also include access to
indexed files and multi-user facilities on record level.

 HAI*Basic has built-in facilities to display windows with in-

context HELP texts.

HAI*Basic versions This manual applies primarily to the HAI*Basic Plus versions on

DOS, IBM PC-network and Novell Netware. Earlier versions of
HAI*Basic do not have all facilities described in this manual.

 Introduction April 2010

HAIBAS.63x OVAL SOFTWARE Page : 2

Organisation of this manual
 This reference manual contains the following chapters:

 Language features
 Describes the general concepts of the HAI*Basic language.

Describes all commands, functions, statements and system
variables in alphabetical order.

 Drivers
 Describes all features of the peripheral drivers and pseudo-

drivers for communication with the host operating system.

 Error codes
 Describes the handling of errors and exceptional conditions. It

enumerates all error codes and their meaning.

 System parameters
 Describes the definition of the parameter file HAI.PAR

 File structure
 Describes the internal structure of the HAI*Basic files.

 Utilities
 Describes the function of the HAI*Basic Formatted List utility

and the HAI*Basic compiler.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 3

2. LANGUAGE FEATURES

2.1. INTRODUCTION
 This chapter starts with a description of the general concepts of the

HAI*Basic language. It also presents the details of all HAI*Basic
statements, commands, functions and system variables.

Statements Statements are instructions within a HAI*Basic program and they are

therefore preceded by a statement number.

 Example: 1010 PRINT "Good morning"

 Statement numbers range from 1 to 64999.

Commands Commands are instructions that do not make sense within a HAI*basic

program.

 Example: LIST 10,200

 The distinction between statements and commands is not always very

strict:

 1. Certain statements and command are succesfully executed as

an instruction by the source interpreter, but the do not function
in compiled programs.

 Example: TRACE

 2. Statements typed in without a preceding statement number are

considered as a command and they are immediately executed.
They are useful for test purposes. It is the responsibility of the
programmer that they make sense in the test environment.

 Example: PRINT ASC(T$(7,1))

Multiple statements A statement may consist of more than one substatement seperated by

backslashes.

 Example: 250 A=1 \ B=0 \ C$=""

 See also the use of multiple statements in the IF ... THEN statement.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 4

Maximum length The maximum statement length is 250 characters.

 It is possible to type in statements longer than 250 characters by using

function key F2. This is not recommended since it is not possible to edit
these long statements (except by retyping them).

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 5

2.2. EXPRESSIONS

 Expressions consist of references to constants, variables and functions.

These expression elements are tied together by operators.

 Example: (MOD(C,7)+1)*10

 The simplest expression is a single numeric constant (like 1) but

expressions can have any degree of complexity.
 The reader of this text is supposed to have a general knowledge about

expressions in programming languages.

Data types There are two types of data: numeric data and string data.

 Numeric data
 Numeric data is written as a signed or unsigned integer number

consisting of at most 14 digits.
 The actual value ranges from - 140 737 488 355 328 to
 + 140 737 488 355 328 due to its internal representation as a binary

number in two's complement notation. Its length ranges from 1 to 6
bytes (see the DIM statement for more details).

 String data
 String data consists of at most 1024 characters represented by the 8

bits an a byte.

Internal The internal character codes are almost identical to the character
representation codes on IBM-like PC's running PCDOS or MSDOS:

 0 to 31 Used for special purposes. They cannot by used in a regular

PRINT statement.
 32 to 223 According to DOS on IBM-like PC's.
 224 to 255 Not used.

 You can however use any value from 0 to 255 as a string character

(see the CHR function).

Data type Implicit data type conversion in expressions does not exist.
conversion Conversion between numeric data and string data is explicit by using

the functions ASC, CHR, VAL, STR and the mask operator.
 An illegal mix of data types results in error code 62.

Numeric constants A numeric constant is a signed decimal number.

 Examples: 10, -3, 12345678901234

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 6

String constants A string constant consists of 0 to 1024 characters enclosed in quotes.

 Examples: "ABC", "P Q", " ", ""

Numeric variables The name of a scalar numeric variable can be a letter A to Z, optionaly

followed by a digit 0 to 9.

 Examples: A, D5, Y7.

 Numeric arrays have the same naming convention, but the name is

followed by a number of dimensions definitions between parentheses.

 Examples: A(10), D5(20,4), Y7[10], F3[1,2,3]

String variables The name of a scalar string variable can be a letter A to Z, optionally

followed by a digit 0 to 9 and then always followed by a dollar sign $.

 Examples: C$, F4$, Z3$

 String arrays have the same naming convention, but the name is

followed by a number fo dimension definitions between square brackets
(The parentheses are used for substring references).

 Examples: C$[5], F4$[3,3], Z3$[5,10,20]

Current stringString variables (and all elements of a string array) have a current
length length ranging from 0 to the DIMmed length (see the LEN function).

Substring Part of the contents of a string variable (or of a string array element)
reference can be referenced as a substring.

 Examples:
 A$(5,L) L characters starting at position 5.
 Y$(P) All characters starting at position P until the current

length of the string.
 H$[I+1,J](8,1) The 8th character of the array element.

 The name of a numeric variable may be re-used for a string variable

and for a numeric and string array, since the $ and the (and the [are
part of the name. The variables B, B$, B(10,20) and B$[10,20] are all
different and they may exist at the same time.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 7

 The first element of an array has subscripts (1), (1,1), (1,1,1) etc.

 See the DIM statement for more details.

System variables There are five system variables in HAI*Basic: DAY, HELP, PASS,

PASS$ and USER.
 See the definition of these variables in this chapter and also the LET

statement.

Operator priority The following operators are available. They are listed in descending

order of priority. Operators without a separating blank line have equal
priority.

 Arithmetic operators

 - unary minus

 * multiplication
 / division

 + addition (or string concatenation)
 - subtraction

 Mask operator

 :

 Relational operators

 = equal to
 < less than
 <= less than or equal to
 > greater than
 >= greater than or equal to
 <> not equal to

 Logical operators

 NOT
 AND
 OR

Arithmetic The arithmetic operators act as usual.
operators

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 8

String operator The concatenation operator + appends the second operand to the first
operand.

 Examples: F$+"ABC"
 "PQ"+J$+"xy"

Overflow An overflow error is produced in any of the following circumstances:

 1. Assignment of a too large numeric expression result to a

numeric variable.
 2. Assignment of a too long string expression result to a string

variable.
 3. A numeric value does not fit in the string format as defined by

the mask definition.
 4. Attempt to divide by zero using the division operator / or the

MOD function.

 Note: The intermediate numeric result during expression evaluation

may have a length of 28 decimal digits. The result of the entire
expression must not exceed 14 digits (apart from other
restrictions dependant on the purpose of the expression result).

 The error code is 0. The overflow error can be trapped using the ON

OVERFLOW GOSUB statement. Ignoring the overflow error causes
incorrect expression results.

Relational Relational operators compare (sub)expressions. The two operands
expressions must either have both numeric type of both string type.
 The result of the operation is either the numeric value -1 (true) or 0

(false).
 String values are compared according to the internal character codes.

 The following examples are all true:

 "ABC" < "B"
 "ABC" < "ABCD"
 "Z" < "a"

 The values true and false are numeric values. You may use them in

expressions.

 Example: LET A=B=10 is a valid statement. The result in A will be

-1 or 0.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 9

Logical operators The logical operators are used to combine the result of relational
operations.

 Examples: IF A>B AND C<10 GOTO 2010

 AND, OR and NOT operate on the individual bits. This is consistent with

the definition of the values true and false. The value -1 in two's
complement notation consists of all binary ones. The value 0 consist of
all binary zeros.

Mask operator The mask operator converts a numeric value to a formatted printable

string representation according to the mask definition.

 Examples: P$=A:"###0.00"
 PRINT A:M$

 The operation is controlled by the mask characters:

 0 yields 0 if leading zero.
 # yields spaces if leading zero.
 * yields * if leading zero.
 $ yields a $-sign in the rightmost $-position (floating $-sign).
 . yields decimal point unless preceded by a suppressed leading

zero.
 , yields comma unless preceded by a suppressed leading zero.
 + yields + if positive value or else -
 - yields space if positive value of else -
 / yields a slash /

Functions Functions need zero, one or two arguments and return a numeric or

string value.

 Display and printer control function have string type. The following

example is valid:

 2020 D$=CS+@(20,10)+"Empty Screen"
 2030 PRINT D$

 See the function definitions in this chapter.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 10

2.3. FILE MANAGEMENT AND PERIPHERAL DRIVERS

File management HAI*Basic has a set of powerful file management statement for
 - sequential,
 - random on number and
 - random on index
 file access.

 These statements are:
 ENABLE and DISABLE
 OPEN and CLOSE
 READ, WRITE and INSERT
 DELETE
 INPUT and PRINT
 GET and PUT

 All file management statements have a format similar to:

 OPEN (n UNIT=u ERR=stno MODE=m)f$

 All options are defined in this chapter.

Multi-user HAI*Basic supports multi-user access on both file level and record level.

File access can be exclusive or shared. Individual records can be
locked in case of shared file access.

 See the I/O statement definitions in this chapter and also the chapter on

file management.

Peripheral drivers Peripheral hardware can be controlled by OPENing a driver instead of a

file.

 Example: 3010 OPEN (1)"$LPT"
 ...
 3050 PRINT (1)"Printer output"
 ...
 3100 CLOSE (1)

 See the chapter on drivers for all details.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 11

2.4. BASIC EDITOR

 The basic source program editor allows to key in and to update basic

programs. The commands are defined later on in this chapter (LOAD,
SAVE, LIST, etc.). There are however a few general points to be
described here.

 A statement can be added by keying in the statement preceded by its

statement number and followed by RETURN.
 It replaces a possible already existing statement with the same number.
 Keying in only a statement number deletes that statement.

 The editor handled encoded compressed basic source files and ascii

files.
 Ascii files are used to merge pieces of basci code.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 12

2.5. SYNTAX CONVENTIONS

 The remainder of this chapter defines all language features in

alphabetical order.

 The definitions are presented by its format(s), explanatory text and and

example.

 Although you may type keywords and variables in upper or lower case,

this manual follows a typographical conventions.

Keywords HAI*Basic keywords are in uppercase characters.

 If an option keyword is followed by a = sign then the = sign is part of the

keyword.
 If a function keyword is followed by a parenthesis (then the (is part of

the keyword.

 Examples: ERR=5000 (ERR= is different from ERR)
 MOD(A,10)

Expressions Expressions are presented in their simplest form: a scalar variable of

type numeric or string as appropriate. The use of lowercase characters
indicates that the variable represents an expression.

 Examples: n
 f$

 Variables are in uppercase characters and they may have embedded

subscript expressions.

 Examples: Y
 A$(I+2,J)

Lists A list of variables in an I/O statement is named a var_list.

 Example: A B$[3,4] C(A+1,T)

 A list of expressions in a DATA statement is named a expr_list.

 Example: H F*4+1 F$ "XYZ"

 A list of expressions in a PRINT statement is named a print_list.

 Example: PRINT A$,B,C:"##0"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 13

Commas Commas in a print_list are equivalent to the function HT (horizontal tab).
Commas between the variables in a var_list or between the
expressions in an expr_list are superfluous. The meaning of the list is
unambiguous anyway.

Statement numbers The statement numbers (in the range of 1 to 64999) are represented by

stno.

 Example: GOTO stno

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 14

2.6. SUBROUTINES, ROUTINES AND FUNCTIONS

Subroutines, Routines and Functions are used in HAI*BAS to produce reusable code and
break programs into smaller modules.

2.6.1. HAI*BAS program environment

The environment in which a HAI*BAS program runs consists of 3 parts:

 1. Data (including HELP file).
 2. Code.
 3. Files.

In release 4 there can only be 1 instance of these environments. CHAIN can run a new code
module but it does not return. Similarly, CLEAR wipes out data without any chance of recovery
and CLOSE does the same for file access.

Release 5 provides a stack mechanism that allows local environments to be created by a
child and restores the parent environment on exit. The decision to create a local environment
is taken by the child; this means it is possible to remain compatible with the BASIC
philosophy of allowing global access to all items (with all the inherent dangers of such an
approach).

The following keywords work with this stack mechanism (they are described more fully later
on):

GOSUB The most limited statement, GOSUB can only load a new code module

(such as an overlay). The parent module is restored by the RETURN
statement.

 Note that there is no possibility for GOSUB to create a new environment.

In practical terms, this means that the stack remains part of the parent and
so RESET (or BEGIN or CLEAR) will discard all GOSUB modules to restore
the parent program and reset the stack. The parent is reloaded from disc, if
necessary.

 By convention, code that is activated by GOSUB is referred to here as a

Subroutine. A Subroutine may be local (ie within a code module and identified
by a statement number) or global (ie a code module itself and identified by a
module name).

 Subroutines are typically used for minor tasks within a program and are

generally specific to that program.

 NOTE that in releases before 5.87 CALL was used for Subroutine modules but

RESET within the Subroutine DID NOT reset to the parent, but remained at
the level of entry to the Subroutine.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 15

 Examples of Subroutine usage:

 100 GOSUB "subr1"
 200 GOSUB 2000

CALL CALL has all of the features necessary to write code that is truly independant

of the parent program. It can load a new code module and allow new data and
file environments to be created.

 Since CALL can create a new environment, the stack is considered part of the

CALLed child and RESET (or BEGIN or CLEAR) will reset the stack to it's state
on entry.

 By convention, code that is activated by CALL is referred to here as a Routine.

A Routine may be local (ie within a code module and identified by a
statement number) or global (ie a code module itself and identified by a
module name).

 In general, a Routine starts with full access to all parent data and files. The

only exceptions are variables with the same name, and files with the number,
as used locally.

 The decision to create a purely local environment is taken by the child using

BEGIN, CLEAR or CLOSE.

 CLEAR provides a local data environment. No parent variable can be directly

accessed except when passed by reference in the parameter list supplied to
the Routine (this, the VAR option, is explained later on).

 CLOSE provides a local files environment. No parent file can be directly

accessed except when passed by reference in the parameter list supplied to
the Routine (the FILE option, like the VAR option, is explained later on).

 BEGIN is simply a combination of CLEAR and CLOSE.

 A less 'pure' Routine may elect to retain access to the parent environment

but still requires some local data or files. The LOCAL keyword can prefix DIM
or OPEN for this purpose, for example:

 50 LOCAL DIM LEN=14 W LEN=1024 X$
 60 LOCAL OPEN (5) "MyIndex.hix"

 These resources automatically disappear or are closed on exit from the

Routine.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 16

 Examples of Routine usage (the CALL statement is fully explained later on):

 300 CALL "rout1"
 310 CALL "rout2"
 320 CALL "rout2" ()
 330 CALL "rout3" (A$, 35, VARZ$[], FILE 5)
 400 CALL 11000
 410 CALL 12000
 420 CALL 12000 ()
 430 CALL 13000 (A$, 35, VARZ$[], FILE 5)

FUNC, FUNC$
 These two keywords have all the power of the CALL statement (see above)

and can be used within any valid HAI*BAS expression to call code that
returns a value (numeric for FUNC, string for FUNC$).

 By convention, code that is called by FUNC or FUNC$ is referred to here as a

Function. A Function may be local (ie within a code module and identified by a
statement number) or global (ie a code module itself and identified by a module
name).

 A Function can be treated as a Routine (ie activated by CALL instead of FUNC

or FUNC$); the return value is then ignored. It is an error to use GOSUB for a
Function.

 Examples of Function usage (FUNC and FUNC$ are fully explained later on):

 500 A = FUNC "rout1" ()
 510 IF FUNC$ "rout2" () = "OK" THEN ...
 520 PRINT FUNC$ "rout2" ()
 530 B$ = FUNC$ "rout3" (A$, 35, VARZ$[], FILE 5)
 600 A = FUNC 11000 ()
 610 IF FUNC$ 12000 () = "OK" THEN ...
 620 PRINT FUNC$ 12000 ()
 630 B$ = FUNC$ 13000 (A$, 35, VARZ$[], FILE 5)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 17

2.6.2. Parameter passing

The concept of parameter passing is essential to a full understanding of the CALL, FUNC,
FUNC$ and ENTRY keywords.

Parameters are used in many computer languages to pass specific information to a general
purpose routine. The purpose is to reuse the routine as much as possible by reducing it's
dependencies.

A simple form of reusable code exists in virtually every HAI*BAS program: the GOSUB
Subroutine. This is limited in it's reusability by a dependence on physical location (the
statement number) and by dependence on global names (eg A$, file 6). Any variable or file
handle the Subroutine uses is visible to the caller and great care must be taken to avoid
conflicts.

Parameter passing allows access to specific details (passed by the caller) without depending
on the names (the A$, file 6) of these details.

Local names are always used for the parameters passed so the code, although always
appearing the same (and hence more easily reusable), will work on whatever information
is supplied to it.

For example, take a small Subroutine to sort an array of index file keys:

 100 S = 0
 110 FOR I = 1 TO 99
 120 REM "If adjacent elements not in order, then swap them"
 122 IF COMPARE(A$[I], A$[I + 1], 5, 1) > 0 THEN S = 1 \
 W$ = A$[I] \
 A$[I] = A$[I + 1] \
 A$[I + 1] = W$
 130 NEXT
 140 REM "If a swap was made"
 142 IF S THEN GOTO 100
 190 RETURN

What disadvantages does this Subroutine have? Firstly, it must be placed at statement
100. In addition, it can only sort 1 array (A$[]) of a fixed size (100 elements) by using the
COMPARE() function for index 1 of file 5. It also alters variables S, I and W$.

How can we change this? Firstly what does the routine do? The end effect is that it has
changed the array A$[]. In order to do this it needs to know the size of A$[] and what details
determine the sort order.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 18

In other words it requires 4 parameters:

The array to be sorted.
 Note that this array needs to be within the parent environment. It would be inefficient

to copy it into local data for the Routine and copy the sorted result back on the return. It
is better, in this case, to work directly on the data.

The size of the array.
 This can be supplied as a direct value by the parent. Supplying a parameter as a

value ensures that a copy is used by the child. It has 2 advantages, firstly that the
parent variable is NOT affected and secondly that a constant can be supplied without
first being put into a variable.

The file number.
 This could also be supplied as a numeric value but this would mean that if the child

issues BEGIN (or CLEAR) it can no longer access the parent file since this is not in the
child's environment.

 A better approach is to pass the actual file (in the same way that the actual array was
passed) so that the child can work directly in this part of the parent's environment.

The index number.
 Again this is a simple value (like the array size) that can be passed to the routine.

When the code is rewritten as a Routine, it appears like this:

 10 ENTRY "ArraySort" (VAR A$[], L, FILE 1, X)
 20 BEGIN
 30 DIM LEN=14 S I LEN=1024 W$
 100 S = 0
 110 FOR I = 1 TO L - 1
 120 REM "If adjacent elements not in sequence, then swap them"
 122 IF COMPARE(A$[I], A$[I + 1], 1, X) > 0 THEN S = 1 \
 W$ = A$[I] \
 A$[I] = A$[I + 1] \
 A$[I + 1] = W$
 130 NEXT
 140 REM "If a swap was made"
 142 IF S THEN GOTO 100
 190 RETURN

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 19

We will now examine the changed statements in more detail.

10 ENTRY "ArraySort" (VAR A$[], L, FILE 1, X)
 The ENTRY statement introduces a Routine (or Function) and names it ("ArraySort").

The parameter list supplies the local names for all items passed to the routine. For
example, although the array is still named A$[] this can represent whatever array is
passed by the caller.

 By default, all parameters are passed by value. In other words L and X are set to the

value of whatever the caller supplies. This ensures separation from the parent data;
the Routine can freely use them as work variables without any impact on the callers
environment.

 The keywords VAR and FILE allow parameters to be passed by reference.

 VAR A$[] is a reference to the actual array that is supplied by the caller. Any changes

made in A$[] work directly in the parent's data environment and so are available to
the caller on return from the Routine.

 FILE 1 is a reference to whatever file number is supplied. Again, the Routine works

with the actual file. Any action on that file (including CLOSE) can affect the caller's file
environment.

 When the Routine is called, the parameter list that is supplied must match that in the

ENTRY statement, as described later on.

20 BEGIN
 BEGIN cuts off the Routine from direct access to parent data and files. This is

generally good programming practice as it produces more reliable code that is easier
to maintain.

 All parameters, including those passed by reference (VAR A$[] and FILE 1, in this

case), remain available after the BEGIN (or CLEAR or CLOSE).

30 DIM LEN=14 S I LEN=1024 W$
 Since the BEGIN statement was used there is no danger that this DIM will confict

with any variables used by the parent; the child has it's own local data environment.

110 FOR I = 1 TO L - 1
 Here the supplied length (L - 1) replaces the constant value 99, allowing arrays of

any size to be sorted.

 Note that it is not, in fact, necessary to pass the size of a complete array dimension

since the system function DIMOF() can be used instead. This is explained later;
passing the length as a parameter is quite valid for the purposes of this example.
It also more flexible, allowing part of a dimension to be sorted.

122 IF COMPARE(A$[I], A$[I + 1], 1, X) > 0 THEN S = 1 \
 Here the constant values 5 and 1 are replaced by FILE 1 and X respectively. The

file number 1 is the local number for whatever file was passed to the function, just as

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 20

A$[] is the local name for whatever array variable is passed. X is the local name for
the value of the index number; it is not the number itself and so cannot affect the
representation of that number in the parent's environment.

 Note that if the file number was passed as a value the BEGIN at statement 20

would ensure an error here when trying to access the file. Passing by FILE
reference is the correct solution, NOT removing the BEGIN!

 Now, how is the Routine used? Since it is a Routine (not returning a value), the CALL

statement must be used. The CALL must also supply a parameter list to tell the
routine which items it is to work on. For example, to sort 12 items in the M$[] array
using index 2 in file 53:

 CALL "ASORT" (VAR M$[], 12, FILE 53, 2)

 The array sort Routine still uses the same local names so after this CALL the

parameters L and X will contain 12 and 2 respectively. For parameters passed by
reference, VAR A$[] now refers to the M$[] array and FILE 1 to the callers file number
53.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 21

2.6.3. Parameter list

Purpose Passing parameters to a Routine or Function.

Format (parameter_list)

Remarks The parameter list ties together the items supplied by the caller (by

CALL, FUNC or FUNC$) and the local names used in the ENTRY statement of
the Routine or Function.

 The parameters must match, both in quantity and type. The precise

matching requirements are described later.

 The parameter list can pass information in the following forms:

 Value By default all items are passed by value. Any HAI*BAS expression

is valid; the result is stored in a local variable within the Routine
(see the ENTRY statement).

 Value passing provides a safe, one way, transfer of data to the

Routine. Any variable passed by value cannot be modified by the
routine once it has cut itself off from the parent data by BEGIN or
CLEAR.

 An example is:

 10 CALL 110 ("HAI*BAS 5")
 110 ENTRY "Name" (A$)

 Variable reference
 The VAR keyword specifies that the following variable is to be passed

by reference. The variable may be freely used by the Routine (using
its local name, as described for ENTRY) and any value assigned into it
will be there on return to the parent.

 Scalar variables, arrays, subdimensions of arrays, array elements,

substrings and system variables can all be passed by reference.

 Variable references provide a means for the routine to update

parent data without the rigid (and error prone) access to all global
data. A general purpose array sort can be written or a module to
provide CUA compatible screen access for the majority of
applications.

 An example is:

 20 CALL 200 (VAR A$, VAR B$(11,10), VAR C$[])
 120 ENTRY "Example" (VAR X$, VAR Y$, VAR C$[])

 NOTE that when a substring is passed by reference all

assignments to it CANNOT DECREASE the active length of the parent
string variable. For example:

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 22

 100 W$ = "abcdef"
 110 FUNC 900 (VAR W$(3,2))
 120 REM "W$ is now abXdef"
 ...
 900 ENTRY "SubStr" (VAR A$)
 910 A$ = "X"
 990 RETURN

 File reference
 The FILE keyword is similar in concept to VAR but works for file

numbers instead of variable names. It specifies that the following
numeric expression gives a file number that is to be passed by
reference. The file may be freely used by the Routine (using it local
number, as described for ENTRY). Any actions, including CLOSE,
affect the file for the parent also.

 File references provide a means to write standard file handling

modules. For example, a single module can be passed a command
code, file number and variable references. It would then handle all I/O
actions (and, possibly, variable DIMensioning) for a particular file
format.

 An example is:

 30 CALL 130 (FILE 53)
 130 ENTRY "FileRead" (FILE 1)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 23

2.7. ALPHABETICAL LIST OF LANGUAGE FEATURES

 The remainder of this chapter consists of the description of all

statements, commands, functions and system variables in alphabetical
order.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 24

@ function

Purpose Positions the cursor on display of changes the current position on the printer. It

is used within an ACCEPT or a PRINT statement.

Format @(c,l) or @(c) or @(,l)

 c is the column number
 l is the line number

 Ommision of the line number implies positioning on the same line.

 Ommision of the column number implies positioning in the same column.

New line on printer
 It is now allowed to position backwards on a printer. That's why positioning to a

column number less than the current column position implies a new line action
in order to position to the specified column number on the next line.

Form feed Positioning to a line number less than the current line number implies
on printer a form feed action in order to position the specified line on the next page.

Example 1100 PRINT @(1,14) "Amount" @(21) A

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 25

ABS function

Purpose Returns the absolute value of a numeric expression

Format Y=ABS(x)

Example 1100 Y=ABS(X)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 26

ACCEPT statement

Purpose Prompts for, accepts and validates keyboard input and passes control to a

specified statement number.

Format ACCEPT [([IND=w] [MODE=m] [SECTOR=l] [TRACK=t])] [print_list] KEY=k [V]
 [CHECK<c1]
 [CHECK=c2]
 [CHECK>c3]
 [CHECK<=c4]
 [CHECK>=c5]
 [CHECK<>c6]
 [EXACT=e1.e2]
 [MAX=m1.m2]
 [MIN=m3.m4]
 [GOTO stno]
 [(or GOSUB stno)]

Remarks The minimal format of the ACCEPT statement is:
 ACCEPT KEY=k
 all other elements are optional.
 One expression of the expression pairs e1 and e2, m1 and m2, m3 and m4

may be omitted. You must specify the decimal point if you omit the first one.

 The print_list may contain any expression that is allowed for a PRINT-to-CRT

statement.

 The print_list may end with a display attribute function. The attribute will then be

effective for the ACCEPT input field.
 Example: The BI function may be used to enter a password.

Input field The input field on the display starts at the current cursor position as left by the

print_list. Or at the next foreground character if the character at the current
cursor position has the background attribute.

 The input field ends
 - at the first background character, or
 - after 250 characters from the start, or
 - at the end of the display,
 whichever comes first.

Default input The user enters and edits the keyboard data in the input field. The print_list or

any other PRINT or ACCEPT statement in the program may fill the input field
with a default value which can be edited or accepted. The first key stroke other
than the special edit keys (see below) clears the input field.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 27

Edit keys The special edit keys are:
 - The Clear key (i.e. the tab or Home key on DOS systems)
 - The horizontal arrows to move the cursor.
 - The vertical arrows to move the cursor vertically if the input field

extends to the next line on the display.
 - The Home key to move the cursor to the start of the input field.
 - The End key to move the cursor to the end of the input field.
 - The PgUp key to move the cursor a number of positions to the right.
 - The PgDn key to move the cursor a number of positions to the left.
 - The Del key removes the current character from the input field.
 - The Ins key put the input system in insert mode until pressing the Ins

key again.

System dependant
 The edit keys are named according to the implementation on the IBM PC

keyboard and with PCDOS. It may be different on other hardware and/or other
host operating systems. See the system parameter file HAI.PAR for the
keyboard parameterization.

Validation The keyboard input is only accepted if all validations are successful. Incorrect

input generates a bleep (if in effect, see parameter file HAI.PAR) and the
program waits for valid keyboard input.

IND w specifies the window number for the accept. 0 is the current parent, 1 to 999

are children of the current parent. Values above 1000, such as obtained by
GET(SECTOR=5), can be used for specific user window numbers. If there is no
IND= then the current window is assumed.

MODE The MODE= option can be used for several purposes, m specifies:
 +1 Prevents clearing the ACCEPT screen area if the 1st key is pressed is

printable.
 +2 Restrict input area to within a single window row (redundant, see

SECTOR=)
 +8 Prevents conversion of single character input to upper case.

SECTOR Is used to specify the maximum length. This is still terminated by a background

character but is otherwise only limited by the window size.

TRACK Screen window area. 1 is the top, 2 (or 0) is the panel area and 3 is the bottom.

If there is no TRACK= or if TRACK=0 is used then the panel area is assumed.

 TRACK= was introduced with release 5.60. IND= sets the default for further

actions; TRACK= does not.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 28

KEY Function key with number k is required.

 The keyboard input value is assigned to the variable V if all validations are

successful.
 The receiving variable has either numeric or string type, which implies a data

type (and length) validation. Omission of V implies function key input without
preceding keyboard data.

CHECK The CHECK option specifies allowed input values. The expression c1 must be

in the same data type as receiving variable V. Every sensible combination of
CHECK options is allowed.

Single character
 A single lower case input character is converted to upper case. This feature is

especially useful for Y(es)/N(o) answers (see MODE= option).

EXACT The expressions e1 and e2 in the EXACT option specify the exact number of

decimal digits required before and/or after the decimal point. It specifies the
exact number of characters for character string input.

MAX The expressions m1 and m2 in the MAX option specify the maximum number

of decimal digits required before and/or after the decimal point.
 The number of decimals after the point of the input value may be less than the

number specified in the MAX option. In this case the input value is scaled
accordingly before assignment to the receiving variable V (see the example
below).

 The position of the MAX within the option list may influence the result of the
ACCEPT statement since the options are evaluated from left to right.

 The MAX option specifies the maximum number of characters for character
string input.

MIN The expressions m3 and m4 in the MIN option specify the minimum number of

decimal digits required before and/or after the decimal point.
 It specifies the minimum number of characters for character string input.

IntegerThe decimal point is for input purposed only. Keep in mind that the input value is

always stored as an integer value.

GOTO/GOSUB
 The GOTO option specifies the statement number to pass control to if all

validations are successful.
 This option may also by a GOSUB option, which is only useful if the subroutine

must return to the statement following the ACCEPT statement (See also
'ACCEPT groups' below).

 Control is passed to the next statement after successful validation if no GOTO
or GOSUB option is specified.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 29

ACCEPT groups
 ACCEPT statements can be grouped together by placing them consecutively in

the program. Two groups must be separated by at least on other statement
(possibly a REM statement).

 Only the print_list of the first ACCEPT statement of a group is executed.
 The group is scanned for the first ACCEPT statement that validates

successfully and the corresponding GOTO or GOSUB option is executed. The
keyboard input is not accepted if no ACCEPT statement validates successfully.

Help The system variable HELP must contain the correct help text number before

executing the ACCEPT statement. See the chapter on HELP.

Single key input
 The ACCEPT statement requires input followed by a function key. Single key

input is possible by explicit access to the $CRT driver (see the chapter on
drivers).

Example 3010 ACCEPT @(10,10) SB "Amount ("SF" "SB")"
 @(18) KEY=2 D$ GOTO 2000
 3020 ACCEPT KEY=1 A MAX=3.2 CHECK>=10
 CHECK<=50000

 The six character input field is terminated by a background character. The

prompt text also has the background attribute. This way the contents of a 'form-
on-the-screen' can been cleared by a single PRINT CF statement.

 The dummy string variable D$ must have a DIMmed length of at least six

characters. Any input terminated by function key 2 causes the program to go
back to statement 2000.

 Input Variable A
 1.23 123
 1.2 120
 1 100
 .2 20

 This scaling is performed before the CHECKs (left-to-right rule).

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 30

ASC function

Purpose Returns the result of a string expression as a numeric type value.

Format Y=ASC(x$) or Y=ASC(x$,n)

Remarks The internal representation of x$ is considered as a numeric value without any

further conversion.

 The length value n ranges between 1 and 6 characters (i.e. bytes). Omission of

n implies a length of 1 byte.

 The current length of expression result x$ must be at least equal to n. If the

current length of x$ is more than n, the left most n characters are taken.

 The function ASC is different from function VAL which is a real conversion from

external ascii to internal binary representation.

Special case If C$ is equal to CHR(255), than CHR(C$) yields 255 and CHR(C$,1) yields -1.

Example 1100 A=ASC(B$,3)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 31

BB function

Purpose Activates the blinking display attribute. It is used within an ACCEPT or PRINT

statement.

Format BB

Remarks The function name BB has its original meaning for monochrome displays. It is

however possible to associate any attribute control sequence with the BB
function.

 See parameter file HAI.PAR for the color display specification.

 See the PRINT statement for general properties of display attribute functions.

Example 1100 PRINT @(10,10) BB "Blinking characters"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 32

BD function

Purpose Activates the dimmed display attribute. It is used within an ACCEPT or PRINT

statement.

Format BD

Remarks The function name BD has its original meaning for monochrome displays. It is

however possible to associate any attribute control sequence with the BD
function.

 See parameter file HAI.PAR for the color display specification.

 See the PRINT statement for general properties of display attribute functions.

Example 1100 PRINT @(10,10) BD "Dimmed characters"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 33

BEGIN statement

Purpose Closes all open files,
 removes all user variables,
 sets the default length of numeric variables to 14 digits,
 sets the default length of string variables to 250 characters,
 restores the DATA pointer and
 empties the return address stack.

Format BEGIN

Remarks BEGIN normally is the first executable statement of a program.

 If the program does not start with begin, all DIMmed variables and OPENed

files from the previously running program are still available.

 Additional variables may be DIMmed and more files may be OPENed. See also

the CHAIN statement.

 The return address stack contains the nesting information of

GOSUB/RETURN, FOR/NEXT and STOP/GO statement pairs.

Example 10 BEGIN

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 34

BI function

Purpose Activates the invisible display attribute. It is used within an ACCEPT statement

to enter a password.

Format BI

Remarks See the PRINT statement for general properties of display attribute functions.

Example 1100 ACCEPT @(10,10)"Password ("SB")"
 @(20) BI KEY=1 P$

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 35

BM function

Purpose Activates the BM display attribute. It is used within an ACCEPT or PRINT

statement.

Format BD

Remarks The function name BM does not have a specific meaning anymore. It is

possible to associate any attribute control sequence with the BM function.
 See parameter file HAI.PAR for the color display specification.

 See the PRINT statement for general properties of display attribute functions.

Example 1100 PRINT @(10,10) BM "Characters with BM attr."

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 36

BS function

Purpose Moves the cursor one position backwards on a display. It is used within an

ACCEPT or PRINT statement.

Format BS

Example 1100 ACCEPT @(10,10)"Number 0-9"(" SB")"
 BS BS KEY=1 N

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 37

BU function

Purpose Activates the underline display attribute. It is used within an ACCEPT or PRINT

statement.

Format BU

Remarks The function name BU has its original meaning for monochrome displays. It is

however possible to associate any attribute control sequence with the BU
function.

 See parameter file HAI.PAR for the color display specification.

 See the PRINT statement for general properties of display attribute functions.

Example 1100 PRINT @(10,10) BU "Underlined characters"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 38

BV function

Purpose Activates the reversed video display attribute. It is used within an ACCEPT or

PRINT statement.

Format BV

Remarks The function name BV has its original meaning for monochrome displays. It is

however possible to associate any attribute control sequence with the BV
function.

 See parameter file HAI.PAR for the color display specification.

 See the PRINT statement for general properties of display attribute functions.

Example 1100 PRINT @(10,10) BV "Char. in reversed video"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 39

CALL statement

Purpose Call a global or local Routine.

Format CALL [(i/o clauses)] name_exp | stno [(parameter_list)]

 i/o clauses
 The standard i/o clauses may be applied immediately after the

CALL. No immediate use is seen for this except compatibility with
the past and options for the future.

 name_exp | stno
 For a global Routine name_exp is a string expression that defines the

HAI*BAS program module that is to be loaded.

 Alternatively, stno is the statement number of a local Routine.

 parameter_list
 The parameter list (described above) determines what is to be passed to the

Routine.

 If nothing is passed the brackets are optional (unlike FUNC and FUNC$, see

below). In this case the ENTRY statement is also optional at the start of the
Routine.

Remarks If an non-empty parameter_list is supplied, the first executable statement in

the Routine, after any REMarks, must be ENTRY.

Examples 100 CALL "ASORT" (VAR A$[], 12, FILE 53, 2)
 110 CALL 1000
 120 CALL 2000 (W$)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 40

CF function

Purpose Clears only the characters with the (default) foreground attribute on the entire

disply. It is used within an ACCEPT or PRINT statement.

Format CF

Remarks You can set up a complete form on the display with all text in background

mode. All input fields are in foreground mode.
 The CF function clears all input fields without affecting the background texts.

Example 1100 PRINT CF

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 41

CH function

Purpose Sets the cursor to the first position of the first line of the display. It is used within

an ACCEPT or PRINT statement.

Format CH

Example 1100 PRINT CH "Left upper corner"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 42

CHAIN statement

Purpose Loads a HAI*Basic program from from a disk(ette) file and starts its execution.

Format CHAIN (UNIT=u ERR=stno)f$

Remarks The CHAIN statement is the only way to load and start a compiled HAI*Basic

program.
 The CHAIN statement acts as a combined LOAD/RUN command in source

interpreter mode.

 The string expression f$ must yield a five character program file name. The

source interpreter assumes a sixth character B and the compiled code
interpreter assumes a sixth character C.

UNIT The program file f$ must be present on unit u. If the UNIT option is not

specified, the file f$ is searched for on all logical units. See the OPEN
statement for the search order.

ERR The ERR option specifies the start of the error handling routine. See the

chapter on error codes for detailed information.

Variablses / The program executing the CHAIN statement is overloaded by the
Open files program from file f$.
 The DIMmed variables and the files left OPEN from the previously executed

program are still available. Most programs however start with a BEGIN
statement, throwing away all DIMmed variables and closing all OPEN files.

 It is good practice in most cases to CLEAR the varaibles and to CLOSE all files
before CHAINing to the next program. The END statement closes all OPEN
files before returning the menu program PMENU.

Compiler If a program is broken up into several sections using the same variables or

OPEN files, special care must be taken when compiling these programs. See
the chapter on utilities.

Example 2200 CHAIN "NEXTP"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 43

CHR function

Purpose Returns the result of a numeric expression as a string type value.

Format Y$=CHR(x) or Y$=CHR(x,n)

Remarks The internal representation of an expression result x is considered as a string

value without any further conversion.

 The length value n specifies the byte length of the internal representation of x

ranging from 1 to 6 bytes. Omission of n implies a length of 1 byte.

 The length of the internal representation of x must be at least equal to n. If the

length of x is more than n, the leftmost n characters are taken.

Example C$=CHR(3)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 44

CLEAR statement

Purpose Removes all user variables,
 sets the default length of numeric to 14 digits,
 sets the default length of string variables to 250 bytes,
 restores the DATA pointer and
 empties the return address stack.

Format CLEAR

Remarks The CLEAR actions are a subset of the BEGIN actions.

 When a small program using very much space for DIMmed variables CHAINs

to a large program, the large program may not fit in the HAI*Basic user space.
The variables of the previous program would only be thrown away by the
BEGIN of the next program, if the next program could be loaded at all. The
solution is to execute a CLEAR in the previous program before CHAINing to
the next program.

 The return address stack contains the nesting information of

GOSUB/RETURN, FOR/NEXT and STOP/GO statement pairs.

Example 1000 CLEAR

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 45

CLOSE statement

Purpose Ends I/O on a file for a peripheral driver.

Format CLOSE (n ERR=stno) or CLOSE

Remarks The simple form CLOSE closes all drivers and files that are currently open.

 The file number n is available for a subsequent OPEN after CLOSEing the file.

ERR The ERR option specifies the start of the error handling routine. See the

chapter on error codes for detailed information.

 The contents of a file is not garantueed to be correct it the file has not been

properly CLOSEd. You must not remove diskettes or removable disks before
CLOSEing all their files.

 The file is marked as 'updated' when writing to the file. If such a file is not
properly CLOSEd, further access to the file is not possible.

 Although it is possible to reset the marker in the file header block, the file
contents is not garantueed to be correct.

Multi-user The CLOSE statement makes the file available for exclusive access by another

user, unless there are still other users having shared access to the same file.

Example 7000 CLOSE(3)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 46

COLUMN function

Purpose Returns the current character column position of PRINT output to a file or

driver.

Format C=COLUMN(n)

Remarks n is the number of the OPENed device or file.

 Function COLUMN returns 0 if the file number n is not in use.

$CRT The display driver is implicitly OPENed with device number 0. So COLUMN(0)

returns the current column position on the display.

$DLK The $DLK driver uses COLUMN in a different way. See the chapter on drivers.

Example 1300 IF COLUMN(0)+LEN(W$) > 80 THEN PRINT

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 47

COMMON statement

Purpose Modifies the effect of subsequent statement(s).

Format COMMON numexp
 COMMON numexp stmt
 COMMON [numexp] specialstmt

Remarks numexp Numeric expression for common area handle.
 stmt Any HAI*BAS statement, except the "special" ones.
 specialstmt A HAI*BAS statement which has a special meaning when used

as part of the COMMON statement.

 There are 3 forms of the COMMON statement.

 The first has a handle number but nothing else. This establishes a default

common area for ALL subsequent statements until COMMON [numexp] END
(see below). These statements are said to be in a "COMMON program block".

 The second also has a handle number; this is followed by (almost) any

HAI*BAS statement. A default common area is established for the duration of
the single statement only. This can be outside or inside a COMMON program
block; in the latter case the block default reasserts itself after the single
statement.

 The third form is for statements that have a special meaning when used as part

of a COMMON statement. These are described separately below and include
END and CLEAR; others (such as LOAD and SAVE) may be added later.

Example 10 COMMON H DIM LEN=14 A LEN=250 B$ C$ LEN=1024 D$
 50 COMMON H
 60 PRINT A B$ C$ D$
 70 COMMON .H END

 Note the use of .H in statement 70; the unary "." operator overrides the default

area for the COMMON program block.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 48

COMMON() function

Purpose Creates a COMMON variables area.

Format COMMON ([numexp])

Remarks numexp Optional numeric expression for size of common variables area.

 A common variables area is created and a handle returned for further access to

the area.

 The optional numexp should be a guide to the final size of the area. The area

will expand automatically, up to a system defined limit, but it is normally more
efficient to allocate the correct size initially.

 The size used can be determined in the BASIC interpreter, after all

DIMensioning is complete, by SHOW COMMON.

Example 10 H = COMMON(2500)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 49

COMMON area members

Purpose References members of a COMMON area

Format numvar.member

Remarks numvar Numeric variable containing COMMON area handle.
 member DIMensioned name of COMMON area member.

 A variable handle can ONLY be a numeric variable (scalar, array or COMMON

member). Expressions and numeric constants are not permitted. For example:

 H.A$, H[A + 27].B$, H.X.C$

 are correct, but:

 1.A$, VAL(H$).A$

 are invalid.

 Within a COMMON program block or statement where a default COMMON

handle H is established, it is as if EVERY variable has an H. prefix. For
example, the following 3 statements are equivalent:

 10 PRINT H.A$
 20 COMMON H PRINT A$
 30 COMMON H \ PRINT A$ \ COMMON .H END

 COMMON program blocks are generally retained thoughout all HAI*BAS

statements except BEGIN and CLEAR.

 A COMMON program block is considered to be part of the program

environment and so will be restored on return from a Routine or Function (ie
the return after a CALL, FUNC () or FUNC$ ()). For example:

 10 COMMON H
 20 CALL 1000
 30 PRINT A$
 ...
 1000 BEGIN

 causes statement 30 to print H.A$.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 50

 The unary "." operator overrides a COMMON program block to force access to
variables in the normal data area. For example:

 40 COMMON H \ PRINT .A$ \ COMMON .H END

 will print the normal variable A$, not H.A$.

Limitation 100 common data areas are allowed.

Bugs DIMensioning common area members must be done in a COMMON program

block or statement.

 DIM H.A$

 is a syntax error. The correct form is either of these:

 10 COMMON H DIM A$
 20 COMMON H \ DIM A$ \ COMMON .H END

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 51

COMMON CLEAR statement

Purpose Clears a COMMON variables area.

Format COMMON numexp CLEAR

Remarks numexp Numeric expression for common area handle.

 The COMMON area is removed. All data and DIMensioned variables are

removed. The handle is freed for eventual reuse.

 Note that when a handle is freed it will be the LAST to be reused. This is

intended to reduce the danger that a HAI*BAS program may accidentally use a
handle number that has been cleared. Consider the following program
fragment:

 10 H = COMMON()
 20 COMMON H DIM LEN=14 A
 30 COMMON H CLEAR
 40 H2 = COMMON()
 50 COMMON H2 DIM LEN=2 A
 60 H.A = 123456789

 Statement 60 is clearly incorrect; it should give an error because the handle H

is not reused for H2 until all other free handles have been used.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 52

COMMON END statement

Purpose Terminates a COMMON program block

Format COMMON [numexp] END

Remarks numexp Optional numeric expression for common area handle.

 The COMMON program block is terminated and normal variable addressing

resumes.

 If numexp is specified then it must match the current default handle; this should

improve program reliability. When numexp is omitted there is no such check.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 53

COMPARE() function

Purpose Compares 2 numbers or strings

Format COMPARE (e1, e2, ne1, ne2)

Remarks e1 is a string (or numeric) expression.
 e2 is another expression of the same type.
 ne1 is an optional numeric expression for a file number.
 ne2 is optional after ne1 for the index number (TRACK=) of the file.

 This compares 2 expressions (e1 and e2). The expressions may be for numeric

or string values but must be the same type.

 The default (no ne1) uses the same comparison as the relational operators "<"

(less than) "=" (equal to) and ">" (greater than).

 If ne1 is supplied but is zero, the default weighting table is used to convert

string values before comparing; they are treated as a type 3 (weighted,
punctuation not stripped) part of an index key. Numeric values are converted as
a type 1 (numeric) part of an index key.

 If ne1 is supplied and represents an open HAI*Basic file, then the comparison

is done as if both values are keys for the primary index for that file. This may or
may not involve weighting; the method is determined by the file organisation.

 If ne2 is supplied in addition to ne2 then this selects a specific index number in

the file which supplies the compare method.

 If ne1 is nonzero but does not represent an open HAI*Basic index file or if ne2

is specified and does not represent and index for that file a HAI*Basic error is
generated.

 When the file number is 0 the (optional) 4th parameter can specify an index

part type to be used for the comparison. This allows, for example, a stripped
weighted comparison (see the example on statement number 60).

Return values
 +1 if e1 is greater then e2
 0 if e1 is equal to e2
 -1 if e1 is less then e2

Example 20 A = COMPARE (A$ B$)
 30 ON COMPARE (A, 0) GOTO 100, 200, 300
 40 IF COMPARE (A$, B$, F3) <> 0 THEN PRINT "Different"
 50 IF COMPARE (A$, B$, F3, 2) > 0 THEN PRINT "Greater"
 60 A = COMPARE (A$, B$, 0 ,4)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 54

COMPAREMASK() function

Purpose Compares 2 strings, allowing "wild card" mask characters.

Format COMPAREMASK (se1, se2, ne1, ne2)

Remarks se1 is a string expression.
 se2 is string expression for a mask, with '?' and '*' wild card characters.
 ne1 is an optional numeric expression for a file number.
 ne2 is optional after ne1 for the index number (TRACK=) of the file.

 This compares a string expression (se1) with a mask (se2)

 The default (no ne1) uses the same comparison as the relational operators "<"

(less than) "=" (equal to) and ">" (greater than) but the wild card mask
characters are recognised:

 '?' matches any single se1 character.
 '*' matches 0 or more characters in se1 until the first one the matches the

se2 character after the '*'.
 If there is no further character after the '*' then this matches the rest of

se1.

 Note that tests for less of greater than may appear misleading when mask

characters are involved.

 If ne1 is supplied but is zero, the default weighting table is used to convert

string values before comparing; they are treated as a type 3 (weighted,
punctuation not stripped) part of an index key.

 If ne1 is supplied and represents an open HAI*Basic file, then the comparison

is done as if both values are keys for the primary index for that file, but still
allowing wild card characters in the mask.

 If ne2 is supplied in addition to ne2 then this selects a specific index number in

the file, instead of using the primary.

 If ne1 is nonzero but does not represent an open HAI*Basic index file or if ne2

is specified and does not represent and index for that file a HAI*Basic error is
generated.

Return values
 +1 if e1 is greater then e2
 0 if e1 is equal to e2
 -1 if e1 is less then e2

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 55

Example 20 A = COMPAREMASK (A$ M$)
 30 IF COMPAREMASK (A$, "HAI*BAS") =0 THEN REM "Match" \
 PRINT "Holland Automation"
 40 IF COMPAREMASK (A$, M$, F4) THEN PRINT "No Match"
 50 IF COMPAREMASK (A$, M$, F3, 2) THEN PRINT "Match"

 AB? matches ABA
 ABX
 AB9
 AB* matches AB
 ABX
 ABCDEFGHIJ
 A?B matches AAB
 AXB
 A9B
 HAI*BAS matches HAI_Holland_Automation_International_BAS
 HAIBAS
 HAIxBAS

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 56

CONTROL function (file)

Purpose Performs several functions on files.

Format CONTROL (f MODE=m)

Remarks f represents the file number of the file on which the function has to be

performed.

MODE=9 Flush a file. A flush is only done if the file has been written by the current user

since the last flush (or since the file was opened if there was no previous flush).

Example 1000 CONTROL (34 MODE=9)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 57

CONTROL function (screen)

Purpose Performs several functions on screen.

Format CONTROL ([IND=w] MODE=m)

Remarks w is the number of the window to which the CONTROL function applies.

MODE=1 Clears the keyboard.

MODE=2 Disables window w and all children. They are removed from the screen and the

underlying window(s) are restored. Output (and ACCEPT) can still use disabled
windows but nothing is seen.

 Note that when running a program from the editor, the ouput may not be seen

until an ACCEPT statement is reached (which automatically disables the editor
window). This disable can be forced before running by:

 CONTROL (IND=50000 MODE=2) \ RUN

MODE=3 Enables window w and all children. They appear on the screen with the same

priority as when disabled.

 If they are fully covered by higher priority windows this statement has no visible

effect.

MODE=4 Forces window w to be fully visible. It is moved to the top of the priority stack. If

the window was disabled then this statement automatically enables it.

 Any children of window w are not included - in fact, since they must lie within

the bound of their parent and the parent has become fully visible they will be
hidden.

Example CONTROL (IND=2 MODE=2)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 58

CR function

Purpose Moves the cursor to the first position of the current line on a display, or

performs a carriage return on a printer.

 It is used within an ACCEPT or PRINT statement.

Format CR

Example 1400 PRINT CR "Left hand side"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 59

CS function

Purpose Clears the entire display. It is used within an ACCEPT or PRINT statement.

Format CS

Remarks The size of the roll-up area is reset to the entire display (See the SB function).

Example 20 PRINT CS @(15) "Heading"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 60

DATA statement

Purpose Specifies input data for the READ DATA statement.

Format DATA expr_list

Remarks All DATA statements in the program constitute one stream of input data for the

READ statements, regardless of their position within the HAI*Basic program.

 See the READ statement for more information.

Example 9000 DATA 1,34,78,"XYZ",B*100

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 61

DAY system variable

Purpose Holds the six digit date.

Format DAY

Remarks The DAY value may be different from the date in the host operating system

(see also the $HOST driver).

 It is normally set in the START program and used in the other program.

Example 4000 PRINT DAY:"00.00.00"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 62

DELETE statement (record)

Purpose Removes a record from an indexed file.

Format DELETE (n IND=i$ ERR=stno)

 n is the number of the OPENed indexed file.

 i$ is the index of the record to be DELETEd.

Remarks The record with index i$ is removed from the file releasing its space.

Error 2 In previous HAI*Basic implementations the record was only flagged as being

DELETEd. It was removed when reorganising the indexed file. The old error 2
(when accessing a record with the DELETE flag) is not generated by the
current implementation anymore.

Multi-user The record to be deleted must not by locked by another user in case of shared

file access.

 See error code 20.

Example 1200 DELETE (n IND="ABCDE" ERR=5000)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 63

DELETE statement (index)

Purpose Deletion of a (shared) index

Format DELETE (n MODE=99 TRACK=t)

Remarks n is the number of the OPENed index file.

 t is the number of the index to be removed.

 It is allowed to delete an index when there is already data present in a file.

 It is not possible to delete a single logical index that shares a physical index

with other logical indexes. Whenever a shared index is removed than de
physical and ALL sharers are also removed.

Example 1010 DELETE (10 MODE=99 TRACK=3)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 64

DIM statement

Purpose Defines variables and reserves memory for these variables.

Format DIM LEN=l1 var_list LEN=l2 var_list ...

Remarks No storage is reserved until execution of a DIM statement.

LEN option The length expressions l1 and l2 must yield a value in the range 1 to 1024. A

numeric variable will never have more than 14 digits, even if the current LEN
value is more than 14.

 The default length for numeric variables is 14 decimal digits. The default length

for string variables is 250 characters.

 The LEN option remains effective until the next LEN option in the same or in

another DIM statement.

 Scalar variables are implicitly DIMmed when appearing at the lefthand side of a

LET statement. Their length is according to the last LEN option executed in a
DIM statement.

Variable names
 See the overview at the start of this chapter.

Maximum size
 The number and size of an array dimensions are only limited by the size of the

HAI*Basic user area (See also the TXTSIZ parameter in file HAI.PAR).

 The array dimensions may be defined by a numeric expression (See also the

FREE function).

 The first element of an array has subscripts (1), (1,1), (1,1,1) etc.

Memory
requirements
 The following expressions define the total memory requirement for variables:

 Numeric scalar variable : n+1
 Numeric array : d1*d2*...*n + d*2 + 2
 String scalar variable : s+3
 String array : d1*d2*...*(s+1) + d*2 + 3

 d is the number of dimensions
 d1 is the first dimension
 d2 is the second dimension, etc.
 n is the number of bytes according to the DIMmed value (see table).
 s is the DIMmed string length.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 65

 Numeric data is represented in 1 to 6 bytes:

 DIMmed length Bytes Maximum value
 1 1 127

 2 1 127

 3 2 32 767

 4 2 32 767

 5 3 8 388 607

 6 3 8 388 607

 7 4 2 147 483 647

 8 4 2 147 483 647

 9 4 2 147 483 647

 10 5 549 755 813 887

 11 5 549 755 813 887

 12 6 140 737 488 355 327

 13 6 140 737 488 355 327

 14 6 140 737 488 355 327

Record fields
 It is strongly recommended to define the variable length explicitly since in most

cases the default or the current LEN value is not correct.
 This is even more important for variables used in the var_list of an I/O

statement. The record fields are implicitly defined by the DIMmed length of the
variables.

 The byte length of numeric variables is relevant when using them in the var_list

of an I/O statement.
 String variables are padded with value 3 characters up to the DIMmed length

when used in the var_list of a WRITE or INSERT statement. The current length
byte is not written to the file record.

 The trailing value 3 characters are removed when reading the record value into
a string variable. Special care is required when using strings with pure binary
bit patterns as an index for indexed files (See the READ statement for more
information).

Initial value Numeric variables have initial value 0. String variables have initial value "" (i.e.

empty string). The same applies to all elements of a numeric or string array.

Examples 210 DIM LEN=3 A B4 LEN=5 C D$
 220 DIM LEN=7 E6(A*2) LEN=2 F$[10,30]

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 66

DIMOF() function

Purpose Provides the number of dimensions in an array variable.
 Provides the size of the specified array dimension.

Format DIMOF(array_name, [num_exp])

 The array name is normally without any element details (eg A$[]). Part of a

multidimensional array is allowed but has little purpose. A scalar variable is
NOT allowed.

 The numeric expression specifies which dimension size is to be supplied.

Remarks This function allows code to be written that does not rely on constant values.

The array name can be one passed by VAR reference to a Function or
Routine.

Examples 10 DIM A[7,8,9]
 20 REM "Print 3"
 22 PRINT DIMOF(A[])
 30 REM "Print 2"
 32 PRINT DIMOF(A[1])
 40 REM "Error - not an array but an element of an array"
 42 PRINT DIMOF(A[1,1,1])

 100 DIM A[7,8,9]
 200 REM "Print 7"
 220 PRINT DIMOF(A[],1)
 300 REM "Print 8"
 320 PRINT DIMOF(A[],2)
 400 REM "Print 8"
 420 PRINT DIMOF(A[1],1)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 67

DISABLE statement

Purpose Disconnects a logical volume from the HAI*Basic program.

Format DISABLE (UNIT=u ERR=stno)

Remarks DISABLE has no effect in recent implementations, except for checking

OPENed files on unit u (see error code 29).

Example 8000 DISABLE (UNIT=2 ERR=9000)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 68

EB function

Purpose Inactivates the blinking display attribute. It is used within an ACCEPT or PRINT

statement.

Format EB

Remarks See the PRINT statement for general properties of display attribute functions.

Example 1100 PRINT BB "Blinking" EB "Not blinking"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 69

ED function

Purpose Inactivates the dimmed display attribute. It is used within an ACCEPT or PRINT

statement.

Format ED

Remarks See the PRINT statement for general properties of display attribute functions.

Example 1100 PRINT BD "Dimmed" ED "Not dimmed"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 70

EDIT command

Purpose Allows a statement to be edited on the display.

Format EDIT stno

Remarks The screen is cleared and the statement is displayed at the top of the screen.

 See the ACCEPT statement for the available edit keys.

 The EDIT command is equivalent to a statementnumber by a function key not

equal to F1 or F2.

Example EDIT 300

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 71

EI function

Purpose Inactivates the invisible display attribute. It is used within an ACCEPT or PRINT

statement.

Format EI

Remarks See the PRINT statement for general properties of display attribute functions.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 72

EM function

Purpose Inactivates the EM display attribute. It is used within an ACCEPT or PRINT

statement.

Format EM

Remarks See the PRINT statement for general properties of display attribute functions.

Example 1200 PRINT BM "Attr. ON" EM "Attr. OFF"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 73

ENABLE statement

Purpose Connects a logical unit to the HAI*Basic program.

Format ENABLE (UNIT=u ERR=stno)var_list

Remarks The only effect of ENABLE in recent HAI*Basic implementations is reading the

volume label information.

 The following information is assigned to the variables of var_list:

 bytes 1 to 4 : HOST
 bytes 4 to 30 : Volume label from host O.S. padded with zeros if

necessary.
 byte 31 : S

Example 1000 ENABLE (UNIT=2 ERR=1500) V$

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 74

END statement

Purpose Ends a program and returns to the program menu.

Format END

Remarks All OPEN files are closed before finishing the program.

 The HAI*Basic compiled code interpreter assumes that the program selection

program is named PMENUC.

 The source interpreter returns to edit mode. The program PMENUB is

searched by executing the END command (i.e. without a statement number).

Example 3000 END

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 75

ENTRY statement

Purpose Names a Function or Routine, names the parameters and specifies whether

they are optional.

Format ENTRY "name" (parameter_list)

 name The Function or Routine name must be specified as a string constant.

This name may be used in the future to provide a library of Functions
or Routines.

 The name must be a string constant from 1 to 31 characters and

contain only A-Z, a-z, 0-9, _ (underline) and $ (dollar) characters. It
must start with a capital A-Z. All names must be unique.

 Naming conventions should capitalise or otherwise identify the startof

each word within the name, for example:

 ENTRY "ArraySort" (VAR A$[], L, FILE 1, X)

 parameter_list
 The parameter list gives local names or numbers to the items passed

by CALL, FUNC or FUNC$. If nothing is passed the brackets are still
needed, as ().

 Optional arguments are enclosed fully in square brackets. See File and

X in example 13.

Remarks ENTRY must be the first executable statement in the Function, after any

REMarks.

 If ENTRY is executed at any other time, error 92 (illegal statement) is given.

 The types of ENTRY parameters must match those supplied by FUNC or

FUNC$ according to the rules described below.

 If there is a mismatch, error 62 (type mismatch) is given.

 ENTRY array references can be of unspecified dimensions in ENTRY (eg A$[])

and will match whatever array is supplied. If the DIMensions are given in
ENTRY then the number of dimensions and all sizes must match.

 Note that the system variables can be passed as VAR references but cannot

appear in an ENTRY list.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 76

 Any optional parameter which is not supplied is made unavailable within the
Function or Routine. A VAR reference or a value is unDIMensioned, access to
a FILE reference is closed. They remain available to the parent upon return
from the Function or Routine.

 Although any or all parameters can be made optional, it is recommended that

only trailing parameters are so used. In other words, an optional parameter
should not be followed by a non-optional parameter.

 See also the NARG system function.

 FUNC or FUNC$ supplies: ENTRY must match with:

 1. Numeric expression Numeric scalar
 2. String expression String scalar
 3. VAR numeric scalar VAR numeric scalar
 4. VAR string scalar VAR string scalar
 5. VAR numeric array element VAR numeric scalar
 6. VAR string array element VAR string scalar
 7. VAR substring VAR string scalar
 8. VAR numeric array VAR numeric array (unspecified)
 9. VAR string array VAR string array (unspecified)
 10. VAR numeric array VAR numeric array (same DIMs)
 11. VAR string array VAR string array (same DIMs)
 12. FILE number FILE number

Examples The numbers correspond to the list of valid matchings above.

 1. 1010 FUNC 2010 (A, 1)
 ...
 2010 ENTRY "NumValues" (X, Y)

 2. 1020 FUNC 2020 (A$, "HAI*BAS")
 ...
 2020 ENTRY "StrValues" (S$, S1$)

 3. 1030 FUNC 2030 (VAR A)
 ...
 2030 ENTRY "NumScalarRef" (VAR Z)

 4. 1040 FUNC 2040 (VAR A$)
 ...
 2040 ENTRY "StrScalarRef" (VAR Z$)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 77

 5. 1050 DIM A[3]
 1052 FUNC 2050 (VAR A[1])
 ...
 2050 ENTRY "NumElementRef" (VAR N)

 6. 1060 DIM A$[4,5]
 1062 FUNC 2060 (VAR A$[1,2])
 ...
 2060 ENTRY "StrElementRef" (VAR S$)

 7. 1070 FUNC 2070 (VAR A$(11,10))
 ...
 2070 ENTRY "SubStrRef" (VAR S$)

 8. 1080 DIM A[3]
 1082 FUNC 2080 (VAR A[])
 ...
 2080 ENTRY "NumArray" (VAR N[])

 9. 1090 DIM A$[4,5]
 1092 FUNC 2090 (VAR A$[1])
 ...
 2090 ENTRY "StrArray" (VAR S$[])

 10. 1100 DIM A[3]
 1102 FUNC 2100 (VAR A[])
 ...
 2100 ENTRY "NumArrayExact" (VAR N[3])

 11. 1110 DIM A$[4,5]
 1112 FUNC 2110 (VAR A$[1])
 ...
 2110 ENTRY "StrArrayExact" (VAR S$[5])

 12. 1120 FUNC 2120 (FILE 1)
 ...
 2120 ENTRY "FileRef" (FILE 91)

Example 13 10 ENTRY "ArraySort" (VAR A$[], L, [FILE 1, X])
 20 REM "Set defaults"
 22 IF STATUS(1) = 0 THEN LOCAL OPEN(1) "$CRT"
 24 IF LENOF(X) = 0 THEN LOCAL DIM LEN=14 X \ X = 1

 10 REM "Alternate form" \
 ENTRY "ArraySort" (VAR A$[], L, [FILE 1], [X])

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 78

ERR function

Purpose Returns the error code of the latest I/O statement.

Format y=ERR

Remarks The ERRor code is reset to zero at the start of an I/O statement (except in case

of a PRINT-to-display, see example below).

 ERRor code 0 after execution of an I/O statement means that no error occured.

 Function keyword ERR is different from option keyword ERR= in I/O

statements.

Example 5000 PRINT "Error code = " ERR

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 79

EU function

Purpose Inactivates the underline display or printer attribute. It is used within an

ACCEPT or PRINT statement.

Format EU

Remarks See the PRINT statement for general properties of display attribute functions.

Example 1200 PRINT BU "Underlined" EU "Not underlined"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 80

EV function

Purpose Inactivates the inverse video display attribute. It is used within an ACCEPT or

PRINT statement.

Format EV

Remarks See the PRINT statement for general properties of display attribute functions.

Example 1200 PRINT BV "Inverse video" EV "Not inverse"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 81

EXIT statement

Purpose Passes control to an object code overlay routine or returns control to the host

operating system.

Format (1) EXIT
 (2) EXIT (MODE=98)
 (3) EXIT (MODE=99)
 (4) EXIT (MODE=100)

Remarks The object code overlay must have be previously LOADed from an object file to

the HAI*Basic user area.

 The object overlay returns control to the next HAI*Basic statement.

 The object overlay file name has format:aaaaa3.HIO
 The character 3 indicates the type of object code (in this case for the Intel

8086/8088 processor).

 Object code overlays are only meant for specific HAI*Line applications. It

requires a depth knowledge of the HAI*Basic runtime system to define the data
exchange between the HAI*BASIC program and the overlay code.

(2) Execute system command
 The second form of EXIT (MODE=99) performs a O.S. command. Using this

command will make the program O.S. dependant!

 Free space is created for the DOS command by swapping all interpreter

working data to disk, in a file "nnZ.SWP", where "nn" is the HAI*BAS user
number (eg "14Z.SWP"). The HAI.PAR SWAPPATH= option is used to create
this file, in the same manner as swap files for HAI*BAS data variables.

 This file (unlike other swap files) is deleted after use; it may be quite large.

 NOTE that if it is not possible to reclaim the memory or reload from the swap

file after execution of the DOS command, the interpreter will, at best, return
directly to the DOS prompt WITHOUT CLOSING ANY FILES. At worst, the
system will collapse. This can happen if a terminate and stay resident program
(TSR), such as SideKick, is used, or if the swap file is deleted.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 82

(3) EXIT to host O.S.
 The third form of EXIT (MODE=99) returns control from the HAI*Basic runtime

system to the host operating system (e.g. DOS).

(4) Outputs entry to error logging file
 Outputs an entry to the error loggging file.

 EXIT(MODE=100) [print_list]

 The optional print_list expression should explain the reason for the log entry. It

is output to the log file after the "App:" (application) log item identifier.

Example 6000 EXIT (MODE=98) "dir"
 6010 EXIT (MODE=99)
 6020 EXIT (MODE=100) "Created entry at statementnumber 6020"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 83

FF function

Purpose Performs a form feed. It is used within a PRINT statement to a printer.

Format FF

Remarks If output to the screen, FF acts as a new line; previously it was ignored.

Example 1500 IF LINE(1)>55 THEN PRINT (1) FF "Heading"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 84

FOR and NEXT statements

Purpose Performs repeated execution of the statements between the FOR and the

NEXT statement.

Format 1010 FOR I=e1 TO e2 STEP=s
 ...
 1100 NEXT

 e1 is the start value for I.
 e2 is the limit for I.
 s is the increment for I (positive or negative).
 s is assumed to be 1 if STEP=s is ommitted

Remarks The FOR/NEXT loop is equivalent to:

 1010 I=e1
 1020 ...
 ...
 1100 I=I+s \ IF I <= e2 GOTO 1020

 if s is positive, or

 1010 I=e1
 1020 ...
 ...
 1100 I=I+s \ IF I >= e2 GOTO 1020

 if s is negative.

 The FOR/NEXT loop is executed at least once due to the trailing decision.

 The expressions e1, e2 and s are evaluated once at the start of the loop.

Nesting FOR/NEXT loops can be nested

 Example:

 1500 FOR I=1 to 10

 1510 FOR J=1 to 20
 1520 A(I,J)=B(I)*C(J)
 1530 NEXT

 1540 NEXT

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 85

 It is the programmer's responsibility to execute the matching NEXT for every
FOR statement.

 Every FOR statement leaves information on the internal stack until the
matching NEXT is executed. It is recommended to exit from the loop by the
NEXT statement, although is is possible to avoid stack problems by embedding
the loop in a subroutine.

 The RETURN statement removes the information of all nested FOR/NEXT's
from the stack.

 Example:

 1100 GOSUB 3000
 ...

 3000 REM "Search W$ in table T$"
 3010 REM "Return index in I or 0 if not present"
 3020 FOR I=1 TO 30
 3030 IF W$=T$[I] GOTO 3060
 3040 NEXT
 3050 I=0
 3060 RETURN

 The program may GOTO from an inner loop or subroutine to a RESET

statement at the outermost program level. The FOR/NEXT and
GOSUB/RETURN stack is entirely cleared.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 86

FREE function

Purpose Returns the number of potential free bytes in the HAI*Basic user area.

Format M=FREE

Remarks The total size of the user area is defined by parameter TXTSIZ in file HAI.PAR

 Compilation of a program reduces its size, thus leaving more space for

variables.

 The FREE value can be used in expressions for variable length and array

dimensions. See the DIM statement for memory requirements.
 Make sure that you DIM all fixed length variables before exhausting the

remaining space for flexible size arrays.

 The value returned by FREE is the potentially free space. Since the area can

expand dynamically, this is much more meaningful.

Example 100 DIM LEN=5 N
 110 N=(FREE-100)/21
 120 DIM LEN=20 T$[N]

 Note: The value 100 is on the safe side.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 87

FUNC , FUNC$ statement

Purpose Call a global or local Function.

Format FUNC [(i/o clauses)] name_exp | stno (parameter_list)
 FUNC$ [(i/o clauses)] name_exp | stno (parameter_list)

 i/o clauses
 The standard i/o clauses may be applied immediately after the FUNC

or FUNC$ keyword. No immediate use is seen for this except
compatibility with the past and options for the future.

 name_exp | stno
 For a global Function name_exp is a string expression that defines the

HAI*BAS program module that is to be loaded.

 Alternatively, stno is the statement number of a local Function.

 The first executable statement in the Function, after any REMarks, must

be ENTRY.

 parameter_list
 The parameter list (described above) determines what is to be passed

to the Routine. If nothing is passed the brackets are still needed, as
(); only CALL can omit the empty brackets.

Remarks A Function returns a value; a Routine does not.

 FUNC$ must be used to call a Function that returns a string value;
 FUNC is used for a numeric value.

Examples 1000 PRINT FUNC$ "Intro" ()
 1010 IF FUNC$ "INDEX" (5, FILE 10, K$, VAR D$) = "ERROR" THEN 400
 1020 IF FUNC 1500 (A) < 0 THEN RETURN

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 88

GET statement (file)

Purpose Reads a block of 256 bytes from a file.
 Gets information from a driver.

Format GET (n TRACK=t ERR=stno EOF=stno) var_list
 or GET (n IND=t ERR=stno EOF=stno) var_list

 n is the OPENed file

 t is the block number

Remarks The blocks are randomly accessed by their order number. The data blocks

have order numbers t=1, 2, 3, ...

 Omission of TRACK=t implies reading the first block of a file containing the

HAI*Basic directory information. See the chapter on file management for its lay-
out.

 Omission of the TRACK=t option is different from TRACK=0 which is illegal.

 The information read is assigned to the variables of var_list.

TRACK= When using TRACK= for reading blocks, the blocknumber is limited to 65,535

so a file greater than about 16 megabytes could not be accessed in this way.

IND= When using IND= for reading blocks, the blocknumber can be up to 8,388,607.

This allows for a file of about 2,147 megabytes.

Drivers See also the chapter on drivers for the function of GET for the various drivers.

Multi-user The file must be OPENed exclusively to allow GET

Example 3040 DIM LEN=128 A$ B$
 ...
 3300 GET(2 TRACK=T ERR=9000)A$ B$

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 89

GET statement (screen)

Purpose Returns the HAI*Basic number (i.e. the window id modulus 1000) but is also

returns, after this, the actual window number.

Format GET (SECTOR=5) w1 w2

Remarks Purely for compatibility reasons.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 90

GO command

Purpose Resumes execution after the program interuption.

Format GO

Remarks The GO command resumes execution of a program after it has returned to edit

mode by pressing the ESCAPE key twice (or pressing the ESCAPE key once
after execution of a STOP statement in the program).

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 91

GOSUB statement

Purpose Transfers program control to a statement saving the number of the next

statement on the stack.

Format (1) GOSUB [(i/o clauses)] name_exp
 (2) GOSUB stno

 i/o clauses
 The standard i/o clauses may be applied immediately after the GOSUB.

No immediate use is seen for this except compatibility with the past and
options for the future.

 name_exp
 For a global subroutine name_exp is a string expression that defines

the HAI*Basic program module that is to be loaded.

 stno
 This is the statementnumber for a local subroutine.

Remarks Upon execution of a subsequent RETURN statement control is transfered back

to the statement after the GOSUB.

 Execution of GOSUB/RETURN pairs can be nexted. It is the programmers

responsibility that every GOSUB has it's matching RETURN.

 It is allowed to execute a GOSUB as an editor command. The RETURN

statement returns back to editor mode.

Example 1100 GOSUB 3000
 ...
 3000 REM "Subroutine header"
 3010 GOSUB "OVER1"
 ...
 3900 RETURN

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 92

GOTO statement

Purpose Transfer program control to a statement number.

Format GOTO stno

Example 1150 GOTO 2000

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 93

HELP system variable

Purpose Holds the identification number of the currently relevant 'in context' help

guidance and explanation texts.

Format HELP

Remarks The system variable HELP must be set by the HAI*Basic program.

 The programmer must save the current HELP value in a variable before

assigning a new value to it within a subroutine activated by:
 I/O error exit
 ON ESCAPE GOSUB
 ON OVERFLOW GOSUB
 ON RECEIVE GOSUB

Example 1030 LET HELP=7

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 94

HT function

Purpose Moves the cursor to the next tab position on the display or the printer. It is used

in an ACCEPT and PRINT statement.

Format HT or ,

Example 4500 PRINT A, B, C

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 95

IF ... GOTO statement

Purpose Transfers the program control to a statement if the condition is true.

Format If c GOTO stno

Remarks See the start of this chapter for the definition of expressions.

 Relational (sub)expressions yield -1 as true value. The IF statement considers

any numeric value unequal to 0 as true.

 The statement IF A GOTO 1100

 has the same effect as the statement

 IF A<>0 GOTO 1100

Example 100 IF A>10 AND (A+B)>41 GOTO 1210

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 96

IF ... THEN statement

Purpose Executes the statement after THEN if the condition is true.

Format IF c THEN statement or

 IF c THEN statement \ statement \ statement

Remarks See the start of this chapter for the definition of expressions.

 Relational (sub)expressions yield -1 as true value. The IF statement considers

any numeric value unequal to 0 as true.

 The statement IF C THEN A=A+10

 has the same effect as the statement

 IF C<>0 THEN A=A+10

 All substatements of a multiple statement are executed if the expression c is

true. If the THEN clause contains another IF statement, then the remaining
substatements are executed if its expression is true.

Example 100 IF A>10 AND (A_+B)>41 THEN GOSUB 3000 \
 A=1 \
 GOTO 510

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 97

INPUT statement

Purpose Reads data sequentially from the keyboard or a file.

Format (1) INPUT var_list or

 (2) INPUT (n ERR=stno EOF=stno) var_list

 n is the opened file.

 The data read is assigned to the variables of var_list.

Remarks INPUT is the opposite of PRINT. It reads ascii characters from peripheral

device or file and the data is converted when assigning it to a numeric variable.

Keyboard (1) INPUT may be used for keyboard input, but ACCEPT is as simple and more

powerfull.

Ascii file (2) The second format INPUT reads data from an ascii format file. An ascii format

file is written by a PRINT-to-file or SAVE statement. An ascii file contains
variable length data with special seperator characters.

Multi-user The file must be OPENed exclusively.

Examples (1) 1100 INPUT A B$ C(4)

 (2) 1200 INPUT (7 ERR=8000)A B$ C(4)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 98

INSERT statement (file)

Purpose Inserts a record into an indexed file.

Format INSERT (n IND=i$ ERR=stno MODE=m) var_list

 n is the OPENed file.

 i$ is the index

 m is the multi-user mode.

 The record is defined by the variables of the var_list.

Remarks It is the programmers responsibility to put the index value i$ as embedded key

at the right position in the var_list. Its position and length is defined at file
creation time (see the $HOST driver).

 The indexed file is automatically extended when required.

 See also error codes: 2 (old error code).
 4 index not valid.
 5 duplicate index.
 6 file extended.
 17 no more space available.

Multi-user A record can be locked after creation in case the file is shared (see the OPEN

statement).

 The record is locked if no MODE option is specified. The record is not locked if

MODE=16.

 A previous lock on a record in the same file is always cancelled unless

MODE=48. Then the previous record lock is retained and the newly inserted
record is not locked.

 See also error code 22.

Example 6700 INSERT (5 IND=I3$ ERR=9000) I3$ N L$ P Q

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 99

INSERT statement (screen)

Purpose Creates a HAI*BAS window.

Format INSERT([0] [IND=w] [MODE=m]) appearance_list

 0 CRT file number. This MUST be used when there is no IND=.
 w Window number; 0 is a new parent, otherwise the window is a child of

the current parent. If there is no IND= then a new parent (IND=0) is
assumed.

 m Mode in which window should be created.

Remarks The appearance_list is a list of window area letters, other special characters

and HAI*BAS coordinates:

 "0" No line drawing. This is also the default if no line drawing character is

supplied.
 "1" Single line drawn at the next HAI*BAS coordinate(s).
 "2" Double line drawn at the next HAI*BAS coordinate(s).

 ATT() Attribute classification. The 1st ATT() gives the pallette classification,

the 2nd is the default for subsequent PRINT (and ACCEPT) output.
 Note that old-style HAI*BAS attributes (such as BD, BB etc) can be used

instead of ATT(). This is only intended for compatibility with older programs.

 "W" Following appearance details apply to the window. @() coordinates

specify where the window is to be put. They may be given in any order,
the outermost define the box, any others may draw frame line(s) within
the window. At least 4 coordinates must be given; there are no defaults.

 Frame lines drawn for the window always overlay any panel characters. They

are unaffected by clear screen, scroll, etc. The lines do not intrude into top or
bottom areas of the window (see "T" and "B", below).

 Parent coordinates are absolute within the physical screen, child coordinates

are relative to the parent.

 "P" Following appearance details apply to the panel. @()

 coordinates specify the size of the panel. They may be given in any order, the

outermost define the size, any others may draw frame line(s) within the panel.

 The panel always starts at @(1,1) and this is at the top left of the panel area

within the window. By default, the panel is the same size as its area within the
window but @() coordinates can make it larger.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 100

 Additional @() coordinates may draw lines within the panel. These are part of
the panel and may be overwritten; they are also affected by clear screen, scroll
etc.

 "T" The following line type and vertical coordinate define the end of the top

area within the screen window. This is a separate area that may be
accessed by PRINT(TRACK=1).

 This area is unaffected by changes to the panel and is typically used for the

panel title.

 "B" The following line type and vertical coordinate define the start of the

bottom area within the screen window. This is a separate area that may
be accessed by PRINT(TRACK=3).

 This area is unaffected by changes to the panel.

 "=" Must be followed by the panel title text and CHR(0). If a top window

area is defined then the title will be centered on the 1st row.

 ">" Must be followed by exactly 4 characters for "More" text output. The 4

characters will be prefaced by the HAI.PAR MORETXT= setting and will
be displayed within the bottom border line of the window.

 @() HAI*BAS @() positioning expressions specify where window and panel

lines are to be drawn. They may be given in any order, the outermost
define the limits, any others may draw frame line(s) within the panel or
window. At least 4 coordinates must be given for the window; there are
no defaults.

 Parent window coordinates are absolute, child window coordinates are

relative to parent. Panel coordinates are relative to the panel (ie starting at
@(1,1)).

 For the window, no line is drawn for any coordinate past the available space;

this is the same as a "0" line on the edge of available space. 0 is guaranteed to
be above the top and before the left; similarly 26 is always below the bottom
and 81 past the right on the whole screen.

 A coordinate of -1 means the window is to be positioned relative to the current

cursor.

 "1+" a blank column is maintained at the left and right window borders.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 101

MODE=1 Will insert an embedded window. This kind of window is treated as a 'view' into
(a part of) the target window. Important is to identify what is the target of the
view. For this purpose, the target window MUST be the current window when
the view is inserted.

 Coordinates of a view are relative to the target (i.e. current) window.

 It the target window is closed, all views into it are automatically closed.

MODE=4 Will insert a temporary window. A temporary window is automatically removed

when the 1st key (except Help) is pressed, when the ACCEPT is not within the
temporary window.

Default Older HAI*BAS programs do not use the window area letters, such as "W" and

"P". In this default mode only, the outermost coordinates are assumed to
position the window and any inner coordinates may draw lines within the panel.

 In this case the panel coordinates are relative to the screen or parent window

(as are the window coordinates). Note that normally (after "P"), the panel
coordinates are relative to the panel itself and may extend beyond the visible
area within the window.

Note Children windows may overlap the borders of their parent.

Examples 10 INSERT(IND=0) "W2" @(3,3) @(77,22)

 creates a double line window, about 3 spaces in from the screen edges.

 20 INSERT(IND=0) "W2" @(3,3) @(77,22) "T1" @(,5) "B0" @(,21)

 adds single row top and bottom areas. The top area is separated from

the panel by a single line. There is no separator between the panel and
the bottom area.

 30 INSERT(IND=0) "W2" @(3,3) @(77,22) "T1" @(,5) "B0" @(,21)

"=" "Title" CHR(0) ">" "<+->"

 adds a title in the top area and More characters within the bottom

window border.

 40 INSERT(IND=0) "W2" @(3,3) @(77,22) "T1" @(,5) "B0" @(,21)

"=" "Title" CHR(0) ">" "<+->" "P0" @(250,100)

 increases the panel to the maximum size.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 102

LEN function

Purpose Returns the current length of a string expression result.

Format L=LEN(x$)

Remarks The current length ranges between 0 and 1024.

 See also the section on expressions at the start of this chapter.

Example 3450 PRINT LEN(A$[I])

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 103

LENOF() function

Purpose Provides the DIMensioned length of a variable.

Format LENOF(variable_name])

 The variable can be a scalar or array.

Remarks This function allows code to be written that does not rely on constant values.

The array name can be one passed by VAR reference to a Function or
Routine.

 For numeric variables, LENOF() returns the digit length (as is used by the DIM

statement). String variables give the maximum character length.

 If the variable does not exist, 0 is returned.

Examples 10 DIM LEN= 14 A LEN= 250 B$ C$[10]
 20 REM "Print 14"
 22 PRINT LENOF(A)
 30 REM "Print 250"
 32 PRINT LENOF(B$)
 40 REM "Print 250"
 42 PRINT LENOF(C$[])
 50 REM "Print 0"
 52 PRINT LENOF(D)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 104

LF function

Purpose Performs a linefeed on a display or printer. It is used within an ACCEPT or

PRINT statement.

Format LF

Remarks The current column position does not change.

Example 1230 PRINT "First line" LF "Second line"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 105

LINE function

Purpose Returns the current line number on a display or printer.

Format L=LINE(n)

Remarks n is the number of the OPENed device.

 Function LINE returns 0 if the file number n is not in use.

$CRT The display driver is implicitly OPENed with device number 0. So LINE(0)

returns the current line number on the display.

Example 1400 IF LINE(3) > 55 THE PRINT (3) FF "Heading"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 106

LIST command

Purpose Lists one ore more statement of a HAI*Basic program in memory to a device or

an ascii type file.

Format LIST driver__name stno,stno
 or LIST driver__name stno,
 or LIST driver__name ,stno
 or LIST driver__name
 or LIST driver__name stno

Remarks The driver__name is optional. The display is the default list device.

 The printer driver is named "$LPT"

 Omission of the first statement number (but with comma) starts the list with the

first statement of the program.

 Omission of the second statement number (but with comma) ends the list with

the last statement of the program.

 Omission of both statement numbers lists the entire program.

 Specification of a single statement number (without a comma) lists only one

statement.

 LIST can be paused by the Break (ctrl C) or KEY=12 (escape) keys.

Halt list The list may be halted by pressing the ESCAPE key once. You may then either

abandon the list by pressing the ESCAPE a second time or continue by
pressing the CLEAR key.

Examples LIST 500,1000
 LIST "$LPT"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 107

LKEY function

Purpose Gives the logical function key code of the last ACCEPT.

Format LKEY

Remarks The LKEY variable is set to the logical value of the last function key that is

successfully ACCEPTed or activates an ON KEY= event trap.

 The logical value only differs from the actual when a cursor movement key is

ACCEPTed as KEY=1 or KEY=2, in the absence of any specific ACCEPT or
ON KEY= for the actual key code.

 After an ON KEY= event trap, the LKEY value is always the same as FKEY;

there is no conversion to KEY=1 or KEY=2 for event trapping.

Example 10 ACCEPT KEY=1
 20 PRINT "Function key" FKEY " was logically ACCEPTed as" LKEY

 If KEY=1 is used then FKEY and LKEY are both 1. If any of the cursor

movement keys that are logically treated as KEY=1 is used (such as KEY=15,
down arrow) then FKEY will be the code of that key but LKEY will still be 1.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 108

LOAD command and statement

Purpose Loads a program, ascii, help or object overlay file into memory.

Format LOAD (UNIT=u ERR=stno)f$

 u is the logical unit number.

 stno is the error handling subroutine.

 f$ is the name of the file to be loaded.

 the minimal format is LOAD f$.

Remarks If UNIT=u is omitted file f$ is search for on all available units. See the OPEN

statement for the file search order.

Program files
 A program already residing in memory is lost when loading a compressed

HAI*Basic source file. It does not effect DIMmed varaibles and OPENed files.

 The last character of the file name must be B. The B is assumed if omitted.

Asccii files Loading an ascii program file is similar to keying in those statements: The ascii

format program is merged with the program already present in memory,
inserting and/or replacing statements.

Help files The HELP texts are loaded to memory.

 Loading the help texts is abandoned in case of errors and the HELP feature will

not be available to the program.

 The last character of the file name must be H.

Object overlay files
 The object overlay is loaded to memory.

 The last character of the file name must be a 3 for DOS/8086 object code.

Example LOAD (UNIT=3)"PROG1"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 109

LOCAL DIM statement

Purpose Dimensions local variables within a Function or Routine.

Format LOCAL DIM [LEN=num_exp] [var_names] ...

Remarks This statement is the same as the normal DIM but creates local variables only.

These disappear on the RETURN from the Function or Routine.

 Local variables (unlike parameter variables) also disappear on CLEAR or

BEGIN.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 110

LOCAL OPEN statement

Purpose Opens local files within a Function or Routine.

Format LOCAL OPEN (i/o clauses) name_exp

Remarks This statement is the same as the normal OPEN but opens local files only.

These are automatically closed on RETURN from the Function or Routine.

 Local files (unlike parameter FILE references) are closed by CLOSE or BEGIN.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 111

MOD function

Purpose Returns the remainder after division of two numeric expression results.

Format R=MOD(x,y)

Remarks The result in R is negative if x is negative

Example 2300 N=N-MOD(N,100)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 112

MVER$ system variable

Purpose Gives the current module version

Format MVER$

Remarks The module version is set whenever a program module is entered. It is

initialised when the module is loaded into memory, from the last 4 bytes of the
32 byte file description in the BASIC or CODE file header. Every loaded
program has its own MVER$.

 MVER$ is a system variable and so a new value can be assigned to it. In the

BASIC interpreter only, this new value will be written into the file header when
the module is saved.

 Note that MVER$ cannot hold more than 4 bytes.

 Although each module has its own copy of MVER$, a VAR reference to the

current module can be passed to a Function or Routine.

 The MVER$ value is included in SHOW output, system error message display

and error logging.

Example 10 IF MVER$ = "" THEN MVER$ = "A.00"
 20 PRINT "Version: " MVER$

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 113

NARG system function

Purpose Yields number of arguments supplied to a Function or Routine.

Format NARG

Remarks NARG is only meaningful within a HAI*BAS Function or Routine with optional

parameters.

 It gives the number of arguments actually supplied by the caller.

 At the main level (ie before any Function or Routine is called), it always yields

0. In a Function or Routine where all parameters are obligatory (as is the case
for HAI*BAS programs compatible with earlier versions) it yields the number of
parameters.

Example IF NARG < 2 THEN LOCAL DIM LEN=14 A

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 114

NEXT statement

Purpose Indicates the end of a FOR/NEXT loop.

Format NEXT

Remarks See FOR statement.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 115

NEW command

Purpose Clears the entire HAI*Basic program, and data area in memory.

Format NEW

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 116

NL function

Purpose Advances to the start of the next line on a display or printer. It is used within an

ACCEPT or PRINT statement.

Format NL

Example 4500 PRINT @(1,3) "Third line" NL "Fourth line"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 117

ON ERROR GOTO / GOSUB statement

Purpose Specifies the start of the ERROR routine.

Format ON ERROR GOTO stno
 or ON ERROR GOTO
 or ON ERROR GOSUB stno
 or ON ERROR GOSUB

Remarks The subroutine starting at stno is invoked by an HAI*Basic error. The

subroutine (in case of GOSUB) must execute a RETURN statement to resume
normal program execution.

 The ON ERROR GOSUB statement is valid for only one invocation of the

subroutine. The ERROR action is then reset to default system action. A
subsequent ON ERROR GOSUB statement must be executed to re-establish
the start of an ERROR routine.

 Default system action is to abandon program execution.

 The ERROR trap is not taken for direct statements. This prevents the possible

loss of program modifications by, for example, a mistyped SAVE.

Example 1000 ON ERROR GOSUB 9000

 9000 Rem "Error subroutine"
 9010 PRINT @(1,1) ERR$
 9020 RETURN

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 118

ON ESCAPE GOSUB statement

Purpose Specifies the start of the ESCAPE routine.

Format ON ESCAPE GOSUB stno
 or ON ESCAPE GOSUB

Remarks The subroutine starting at stno is invoked when pressing the ESCAPE key. The

subroutine must execute a RETURN statement to resume normal program
execution.

 The ON ESCAPE GOSUB statement is valid for only one invocation of the

subroutine. The ESCAPE action is then reset to default system action. A
subsequent ON ESCAPE GOSUB statement must be executed to re-establish
the start of an ESCAPE routine.

 Default system action is to abandon program execution.

 Default system action is re-established by the RUN command or by execution

of the statement without stno.

 Pressing function key F6 after pressing the ESCAPE key once gives a hard

copy of the display to the printer. You may press CLEAR to resume execution.

Example 30 ON ESCAPE GOSUB 9700
 ...
 ...
 9700 REM "Escape routine"
 9710 ON ESCAPE GOSUB 9800
 9720 ACCEPT @(1,23) "Do you really want to break of the program?

(Y/N)" SB " " BS BS KEY=1 A$ CHECK="N"
GOTO 9750

 9730 ACCEPT KEY=1 A$ CHECK="Y"
 9740 CLEAR
 9750 END
 9760 PRINT @(1,23)" (52 spaces) "
 9770 ON ESCAPE GOSUB 9700
 9780 RETURN
 9800 Rem "Make escape ineffective"
 9810 ON ESCAPE GOSUB 9800
 9820 RETURN

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 119

Notes Statement 30 initially sets 9700 as the start of the ESCAPE routine.
 Statement 9710 establishes a 'do-nothing' ESCAPE routine (instead of

immediate use of the same routine). This avoids accumulation of the ESCAPE
key strokes in case of an impatient user.

 Statement 9760 establishes the original ESCAPE routine before resuming

execution of the normal program flow.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 120

ON ... GOSUB statement

Purpose Selects a statement number from a list and calls that statement as a

subroutine.

Format ON n GOSUB stno,stno,stno, ...

Remarks The expression n yields an order number. A subroutine call is made to the n-th

statement number of a list.

 The next statement after the ON ... GOSUB statement is called is n is greater

than the number of statement numbers in the list.

 Error 63 is generated if n is equal to zero or greater than 250.

Example 1000 ON K+1 GOSUB 2000, 3000, 4000, 5000

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 121

ON ... GOTO statement

Purpose Selects a statement number from a list and transfers program flow to that

statement.

Format On n GOTO stno, stno, stno, ...

Remarks The expression n yields an order number. Program flow is transferred to the n-

th statement number of the list.

 The program continues with the next statement after the ON ... GOTO

statement if n is greater than the number of statements numbers in the list.

 Error 63 is generated if n is equal to 0 or greater then 250.

Example 1000 ON K+1 GOTO 2000, 3000, 4000, 5000

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 122

ON OVERFLOW GOSUB

Purpose Specifies the start of the OVERFLOW routine

Format ON OVERFLOW GOSUB stno
 or ON OVERFLOW GOSUB

Remarks The subroutine starting at stno is invoked when an OVERFLOW condition

occurs.

 See the start of this chapter (expressions) for a definition of the OVERFLOW

conditions.

 The routine must execute a RETURN statement to resume normal program

flow.

 The ON OVERFLOW GOSUB statement is valid for only one invocation of the

subroutine. The OVERFLOW action is then reset to the default system action.
A subsequent ON ESCAPE GOSUB statement must be executed to re-
establish the start of an OVERFLOW routine.

 Division by zero will return a zero value and complete the HAI*Basic statement

before signalling an overflow error.

 Default system action is to generate an error message at the bottom of the

display and to resume execution with incorrect results.

 Default system action is re-established by the RUN command or by execution

of the statement without stno.

Example 1200 ON OVERFLOW GOSUB 9000

 See also the example of the ON ESCAPE GOSUB statement.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 123

ON RECEIVE GOSUB

Purpose Specifies the start of the transmission interrupt routine.

Format ON RECEIVE GOSUB stno
 or ON RECEIVE GOSUB

Remarks The subroutine starting at stno is invoked when an transmission interrupt

occurs.

 The routine must execute a RETURN statement to resume normal program

flow.

 The ON RECEIVE GOSUB statement is valid for only one invocation of the

subroutine. The RECEIVE action is the reset to default system action. A
subsequent ON RECEIVE GOSUB statement must be executed to

 re-establish the start of a RECEIVE routine.

 Default system action is to disable the transmission interrupts at HAI*Basic

level.

 Default system action is re-established by the RUN command or by execution

of the statement without stno.

Example 1200 ON RECEIVE GOSUB 9000

 See also the example of the ON ESCAPE GOSUB statement.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 124

OPEN statement

Purpose Makes a file or device available to the program by OPENing a path.

Format OPEN (n UNIT=u MODE=m ERR=stno)f$

 u must be a number between 1 and 99.

 The file is searched for on the specified unit.
 The file is searched for on all available units if UNIT=u is omitted.

 Data files are searched from HAI*Basic units 1 to 32. Program files are

searched from HAI*BASIC units 32 to 1.

 The $CRT driver is implicitly OPENed with number 0. See also the COLUMN

and LINE function.

 When opening the $LPT driver the MODE= option specifies the printer width.

 f$ is the name of the file or driver to be OPENed.

 The file to be OPENed must exist. See the chapter on drivers for file creation

($HOST driver).

 The host operating system may impose a maximum number of files the can be

OPEN at the same time.

Multi-user MODE=0 (default when omitting MODE=)
 The file is OPENed for exclusive use. Child Functions and Routines may not

reopen the file.

 MODE=1
 Alternative for OPENing a file exclusively, child Functions and Routines may

reopen the file in read-only mode after OPEN(MODE=24).

 MODE=2
 Alternative for OPENing a file exclusively, child Functions and Routines may

reopen the file shared for updating after OPEN(MODE=16).

 MODE=16
 The file is OPENed shared.

 MODE=24
 The file is OPENed read-only. If the initial open is MODE=24, then a child that

reopens the file must also specify read-only.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 125

 The access mode is in effect until CLOSing the file.

 See also the statements INSERT, READ and WRITE and the error codes 21

and 22.

Examples 1200 OPEN (1 MODE=16 ERR=8000)"DATA1"
 1210 OPEN (2)"$LPT"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 126

PASS system variable

Purpose To communicate between HAI*Basic programs.

Format PASS

Remarks PASS always exists. Its type is numeric and its length is 14 decimal digits.

 PASS is not affected by the BEGIN of CLEAR statement.

 PASS is reserved for specific use of HAI packages.

Example 100 LET PASS=32

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 127

PASS$ system variable

Purpose To communicate between HAI*Basic programs.

Format PASS$

Remarks PASS$ always exists. Its type is string and its length is 6 bytes.

 PASS$ is not affected by the BEGIN of CLEAR statement.

 PASS$ is reserved for specific use of HAI packages.

 The use of substring subscripts is not allowed.

Example 100 LET PASS$="ABCDEF"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 128

POS function

Purpose Returns the position of a substring within a string.

Format P=POS(x$,y$)

Remarks Expression result y$ is searched for expression result x$.

 POS returns the position of x$ within y$.

 POS returns 0 if x$ does not occur within y$.

Example 4330 IF POS(A$+" ",B$) GOTO 400

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 129

PRINT STATEMENT (device / file)

Purpose Outputs ascii characters to a device or file.

Format PRINT print_list
 or PRINT (n ERR=stno) print_list

Remarks The display is the default PRINT output device.

 n is the number of the OPENed device or file.

Print_list The print_list consists of a list of expressions. The expression results are

output. Numeric expression results are converted to PRINTable ascii
characters. See the function STR for the conversion rules.

 The print_list must not contain expression results below CHR(32). See the

details of the $LPT driver for detailed printer control with the PUT statement.

Device Device control functions like NL, @ and BV may be part of the print_list.
control

Tab A comma in the print_list is relevant and it acts as the tab function HT.

 Use the mask operator to define columns for right aligned numeric data.

Attributes All attributes are inactivated at the start of a PRINT statement. The effect of an

attribute function always ends at the end of the print_list.

New line The PRINT statement ends with an implicit NL function unless it ends with a

semi-colon. Semi-colons can be used freely to seperate expressions within the
print_list.

Ascii file The PRINT-to-file outputs to an ascii type HAI*BASIC file.

Multi-user The device is OPENed for exclusive use.

Example 6700 PRINT @(41)"--------" NL "Total"
 6710 PRINT @(41) T:"####0.00"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 130

PRINT statement (screen)

Purpose Outputs data to the screen.

Format PRINT [([IND=W] [TRACK=A])] [print_list]

Remarks W Window number. 0 is the current parent, 1 to 999 are children of the

current parent. Values above 1000, such as those obtained by GET
(SECTOR=5), can be used for specific user window numbers. If there is
no IND= then the current window is assumed.

 A Screen window area. 1 is the top, 2 (or 0) is the panel area and 3 is the
bottom. If there is no TRACK= or if TRACK=0 is used then the panel
area is assumed.

 The only change from version 4 is that IND= can be used in to define the

window number and that TRACK= can be used for the screen window area.

 TRACK= was introduced with release 5.60 (22Jan91). IND= sets the the

default for further actions; TRACK= does not.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 131

PUT statement (file)

Purpose Writes a block of 256 bytes to a file.
 Puts information to a driver.

Format PUT (n TRACK=t ERR=stno EOF=stno) var_list

 n is the opened file.

 t is the block number.

 var_list defines the block contents.

Remarks The blocks are randomly accessed by their order number. The data blocks

have ordernumbers t=1, 2, 3, ...

 Omission of the TRACK=t implies writing the first block of a file containing the

HAI*Basic directory information. See the chapter on file management for its lay-
out.

 Omission of the TRACK=t option is different from TRACK=0 which is illegal.

 The contents of the variables of var_list is put into the block.

Help The statement PUT (1 MODE=99) forces the current HELP value to be

effective without the program waiting for ACCEPT input (The $CRT driver has
been opened with filenumber 1 in this example).

Drivers See also the chapter on drivers for the function of PUT for the various drivers.

Multi-user The file must be OPENed exclusively to allow PUT.

Example 3040 DIM LEN=128 A$ B$
 ...
 3300 PUT (2 TRACK=T ERR=9000) A$ B$

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 132

PUT statement (function keys)

Purpose Map function key codes to ACCEPT KEY= values.

Format PUT (SECTOR=10) x,x,x..,x

Remarks In earlier releases the ACCEPT KEY= values were mapped to the function

keys.

 x is the function key number.

Example 1000 PUT (SECTOR=10) 1,2,5,4,5

 This will map the 3rd item to 5. This means ACCEPT KEY=3 is mapped to act if

it was ACCEPT KEY=5.

 In earlier releases 1,2,3,4,3 would be used.

Note Remapping is only for "plastic surgery" on old programs and these do not use

FKEY.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 133

PUT statement (screen)

Purpose Remap row numbers on screen.

Format PUT (SECTOR=11) x,x,x,.....,x

Remarks x is the row number, which must be in the range from 1 to 25.

 A maximum of 25 row numbers may be specified.

 For consistency between the physical screen and the memory image
 PUT (SECTOR=11) clears the screen and removes all windows.

Example 1010 PUT (SECTOR=11) 5,4,3,2,1

 This will remap lines 1,2,3,4 and 5 to 5,4,3,2 and 1.

Note Remapping is only for "plastic surgery" on old programs.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 134

PUT statement (keyboard)

Purpose Writing to the keyboard buffer

Format PUT (MODE=m)

Remarks Normal characters and HAI*Basic keycodes can be written into the keyboard

buffer by PUT(MODE=97) and PUT(MODE=99) statements (which are
explained on the following pages).

 Data written to the keyboard buffer will be used by subsequent ACCEPT

statements (or, possibly, by the BASIC editor).

 These statements are intended to allow special input facilities (e.g. calender,

calculator) to pass their results to the current running HAI*Basic program.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 135

PUT(MODE=97) statement

Purpose Writes a character string to the HAI*BAS keyboard input buffer.

Format PUT(MODE=97) str_exp

Remarks str_exp String expression

 The string expression is transferred to the keyboard input buffer. The length is

that of the string; 03 fillers are NOT added.

 HAI*BAS function and control keys (values in the range 0 to 31 decimal) can be

part of the string. Extended function key codes must be written by
PUT(MODE=99) (see below).

 If there is insufficient room in the keyboard buffer the extra characters are

silently ignored.

Example PUT(MODE=97) "Accept me"
 The string "Accept me" will be displayed for the next ACCEPT statement.

 PUT(MODE=97) "Accept me" + CHR(0) HAI*BAS KEY=1 is represented

internally by value 0 and so this statement will force an input at the next
ACCEPT, without any operator action.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 136

PUT(MODE=99) statement

Purpose Writes a single HAI*BAS keycode to the keyboard input buffer.

Format PUT(MODE=99) num_exp

Remarks num_exp Numeric expression

 The value of the numeric expression is put as a single HAI*BAS keycode into

the keyboard input buffer.

 Values 0 to 11 are function keys 1 to 12; 12 to 31 are control keys and 32 to

255 are ASCII characters.

 Extended function keys start from 256 and their values are the same as is used

by HAI.PAR; 256 is KEY=1 and so on.

 If there is insufficient room in the keyboard buffer the statement is silently

ignored.

 Note that PUT(MODE=99) (without any expression) still retains its previous

function to force guidance HELP display.

 Note also that GET(MODE=99) still gets a single key code.

Example PUT(MODE=99) 0

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 137

RB function

Purpose Bleeps

Format RB

Example 6500 PRINT RB "You made an error"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 138

READ statement

Purpose Reads a record from a direct or indexed file.
 Reads information from DATA statements.

Format (1) READ (n IND=i MODE=m ERR=stno EOF=stno) var_list

 (2) READ (n IND=i$ MODE=m TRACK=t ERR=stno EOF=stno) var_list

 (3) READ var_list

Remarks n is the opened file.

 The record is defined by the variables of the var_list.

(1)
Direct file The first format READ reads the record with order number i from a direct file.

The order number ranges from the lowest recordnumber specified at allocation
time (normally 1) to the highest recordnumber ever written to the file.

 The records are sequentially read when ommiting the IND=i option. The

internal record pointer is reset to the start by CLOSing and re-OPENing the file.

 See also the chapter on error codes (especially error code 4).

(2)
Indexed file The second format READ reads the record with string format index i$ from an

indexed file.

 The records are sequentially read when omitting the IND=i$ option. The

internal record pointer is reset to the start by CLOSing and re-OPENing the file.

 When expression result i$ is shorter than the specified index length then the

first index that starts with i$ is found. Subsequent READs without IND=i$ are
sequential from that position onwards.

 The index i$ must have string type, but it may contain any bit pattern. There is

however on complication when READing a record.
 When assigning the embedded index to a string type variable trailing bytes with

value 3 are removed to end up with the current variable length. If the index
READ happens to end with one ore more bytes with value 3 then those bytes
are erroneously removed before assignment to the variable. The bytes must be
added to the varaible again to obtain the proper index.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 139

 The index to use for the READ statement is indicated by TRACK=t, where t is
the the indexnumber. Omitting TRACK=t will result in a read on the first index.

 Example:

 1200 READ (3 ERR=9000)K$ F1 F2$ F3
 1220 IF LEN(K$)<7 THEN K$=K$+CHR(3) \ GOTO 1220

 The file has been allocated with index length 7. If the current length of K$ is

shorter then the missing bytes must necessarily have value 3.

 See also the chapter on error codes (especially error codes 2, 3, 5, 6 and 18).

(3)
Data The third format READ reads data from DATA statements.

 All DATA statements (regardless of their position in the program) are

considered as one stream of input data.
 An internal pointer holds the current position within this data stream. The

statements/commands BEGIN, CHAIN, CLEAR, LOAD, RESTORE and RUN
reset the pointer to the start of the first DATA statement.

 Reading beyond the last data item in the last DATA statement generates error

code 19 (EOF condition).

Multi-user A record can be locked after READing in case the file is shared (see the OPEN

statement).

 The record is locked if no MODE option is specified.
 The record is not locked if MODE=16.

 The record is not locked and the lock on the previously accessed record is

retained if MODE=48.

 Only one record per file can be locked at the same time.

Example 7110 READ (3 IND=K:"0000" ERR=8900) A B2$ C3 D4$

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 140

REM statement

Purpose Allows to include explanatory text.

Format REM string_constant

Remarks The quotes of the character string constant are optional, although characters

above ascii value 127 will then give weird effects. These characters are
considered as encoded HAI*BASIC keywords.

ACCEPT REM statements do not occupy space after compilation, unless the serve to

seperate two ACCEPT groups. Then they occupy one byte after compilation.

Blister Certain REM statements act as directive for the blister utility. See the chapter on

utilities for the details.

Example 10 REM "Invoice program, version 1.0, date 10Aug1994"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 141

RESET statement

Purpose Removes GOSUB/RETURN, FOR/NEXT and STOP/GO nesting information

from the internal stack, CLOSEs all files, collapses the stack and removes
HELP information.

Format RESET

Remarks This action is also included in the BEGIN and CLEAR statement.

 The RESET statement must only be used to escape from a complicated error

situation at a nested level to a well-defined restart point at the outermost level.

Direct statement
 When RESET is used as a direct statement, it will clear all event traps and

windows. Note that the windows are only 'logically' cleared, the actual screen is
not updated.

Example RESET

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 142

RESTORE statement

Purpose Reset the internal DATA pointer to the start of the first DATA statement in the

program.

Format RESTORE

Remarks See the DATA statement and the READ statement.

Example 7800 RESTORE

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 143

RETURN statement

Purpose Returns to the statement after the matching GOSUB, CALL, FUNC or FUNC$

statement (or the I/O statement with an ERR= or EOF= option).

Format RETURN [exp]

Remarks The routine calls specified by the statements
 ON ... GOSUB
 ON ESCAPE GOSUB
 ON OVERFLOW GOSUB
 ON RECEIVE GOSUB
 and the I/O options ERR=
 EOF=
 act as a GOSUB statement.

 Upon return from a subroutine the information of inner FOR/NEXT loops is

removed from the stack.

 exp
 The following rules determine whether an expression is valid on a

RETURN statement.

 Type of routine RETURN expression
 Subroutine (called by GOSUB) Not permitted.
 Routine (called by CALL) Optional, ignored if present.
 Function (called by FUNC) Numeric expression obligatory.
 Function (called by FUNC$) String expression obligatory.

 The expression is optional for a Routine so that CALL can call code

normally used by FUNC or FUNC$ when the return value is
unimportant.

Example 1100 GOSUB 7000
 1110 CALL 7100
 1120 A=FUNC 7200
 1130 A$=FUNC$ 7300
 7000 REM "Subroutine"
 ...
 7090 RETURN
 7100 REM "Routine"
 ...
 7190 RETURN
 7200 REM "Function FUNC"
 ...
 7290 RETURN B
 7300 REM "Function FUNC$"
 ...
 7390 RETURN B$

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 144

RND function

Purpose Returns a random integer between number 0 and 9.

Format R=RND

Exmample 5400 N=(RND*10+RND)*10+RND

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 145

RUN command

Purpose Starts execution of the HAI*Basic source program present in memory.

Format RUN

Remarks All information is removed from the GOSUB/RETURN, FOR/NEXT and

STOP/GO stack.

 The current LEN values for the DIM statements is reset to 14 for numeric and

250 for string type variables.

 The internal DATA pointer is reset to the first expression of the first DATA

statement.

Example RUN

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 146

SAVE command

Purpose Saves a HAI*Basic program to a basic of ascii file

Format SAVE (UNIT=u MODE=m ERR=stno) f$

Remarks Compressed basic source is expanded when SAVing to an ascii format file.

 The basic or ascii file does not have to exist when executing the SAVE

command. When using MODE=64, the basic or ascii file will be created. An
existing file is extended if necessary.

 The file f$ is searched for on the available units if UNIT=u is not specified. See

the OPEN statement for the search order.

 Use the LIST command for saving part of a program to an ascii file.

Examples SAVE "INV01"
 LIST "INV01" 3000,4999

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 147

SB function

Purpose Activates the PRINT-to-display background mode.

Format SB

Remarks See the ACCEPT statement and the CF function for details.

 See the PRINT statement for general properties of display attribute functions.

Roll-up area Initially (and also after the CS function) the entire display acties as a roll-up

area when continuing PRINTing lines.

 You can restrict the roll-up area to the lower part of the display by writing a

background character (possibly a space): the roll-up area consists of the
display lines below the background area.

 The mininum size of the roll-up area is defined in the HAI.PAR parameter file.

Example See the ACCEPT statement.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 148

SF function

Purpose Inactivates the PRINT-to-display background mode.

Format SF

Remarks See the ACCEPT statement and the CF function for details.

 See the PRINT statement for general properties of display attribute functions.

Example See the ACCEPT statement.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 149

SGN function

Purpose Returns the sign of a numeric expression.

Format S=SGN(x)

Remarks SGN returns -1 if x is negative.

 SGN returns 0 if x is zero.

 SGN returns +1 if x is positive.

Example 7600 H=K+SGN(L)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 150

SHOW command

Purpose Displays details of control areas held by the interpreter

Format SHOW [keyword] [(i/o clauses)] [file_exp]

Remarks The optional keyword can be used to display specific area of interest (by

default all items (except FREE) are displayed.

 CONTROL Displays all memory allocations and free areas in all zones

under the control of the HAI*Basic memory manager.

 COMMON see DATA

 DATA The output format for SHOW DATA:

 DATA xx (data: yy = zz, save: yy = zz)

 where xx is the child Function level, yy is "in" (variables are in

memory) or "OUT" (variables are swapped out to disk) and zz is
the number of bytes currently used. Child 0 does not need to
save any parent details so the "save:" part is omitted there.

 SHOW COMMON can also be used to show the common data

areas currently allocated. The word DATA is replaced by
COMMON and the number xx is the handle.

 Common variable details are also output in the default SHOW.

 FREE Size of free spaces. Also shows a summary of availalble free

space in all HAI*Basic memory manager zones.

 HELP Help file name

 LOAD Program areas controlled by the overlay software, including the

data area and the HAI*Basic editor statement buffer.

 LEN= Default LEN= values.

 ON ON event traps, including all stacked traps for each event.

 OPEN Open files.

 STACK Stack details (same as STACK command)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 151

 UNIT= HAI*Basic unit names (0 for the default unit)

 USER Shows a summary of all screen windows currently in use.

 The optional i/o clauses are as in the OPEN statement, except no file number is

supplied.

 The optional file name expression is also as OPEN and specifies a device or

file name for the SHOW output. By default the console is used.

 SHOW can be paused by the Break (ctrl C) or KEY=12 (escape) keys.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 152

Example SHOW
 SHOW FREE
 SHOW UNIT=
 SHOW STACK (MODE=64) "stack.hia"

Note All SHOW options are for BASIC commands only. They may change or be

withdrawn at any time in the future.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 153

STACK command

Purpose Displays the current contents of the GOSUB/RETURN, FOR/NEXT and

STOP/GO stack.

Format STACK

Example STACK

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 154

STATUS function

Purpose Returns the status of a file number.

Format S=STATUS(n)

Remarks STATUS returns 0 if the file number n is not in use.

 STATUS returns a value unequal to 0 if the file number is in use.

Example 4500 IF STATUS(9) THEN CLOSE(9)

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 155

STOP statement

Purpose Halts execution of the program and displays a message.

Format STOP

Remarks Program execution resumes when pressing the CLEAR key.

 The program returns to edit mode when pressing the ESCAPE key. You can

then resume execution with the GO command after inspection of the contents
of the relevant variables for debugging purposes.

Example 3400 STOP

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 156

STR function

Purpose Returns the value of its argument in string format.

Example Y$=STR(x)

Remarks The string value returned contains a leading space (for non-negative values) or

a leading minus sign (for negative values).

 The STR function is implied in a PRINT statement.

Example The statements

 1430 PRINT A

 and

 1430 PRINT STR(A)

 have the same effect.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 157

TRACE statement

Purpose Allows to trace a HAI*Basic program.

Format TRACE
 or TRACE "$LPT"
 or TRACE (MODE=m)f$
 or TRACE END

Remarks The TRACE facility statements activates the statement number trace facility.

 You execute the program in step-by-step mode pressing the CLEAR key. The

numbers of the 10 most recently executed statements appear in a window on
the display.

 The statement keyword is included.

 The format TRACE "$LPT" allows you to send the trace output to a printer.

 The format TRACE f$ allows you to send the trace ouput to an ascii file. f$ is

the name of the ascii file (xxxxxA.ASC). When using MODE=64 the ascii file
will be created if not yet present.

 Modulenames are output as part of the trace information whenever a new

module is entered (e.g. by CALL, FUNC, RETURN etc.). This name is
abbreviated for screen output but appears as a full file name when tracing to
printer.

 The TRACE END statement inactivates the trace facility.

CLOSE The BEGIN statement and the simple form CLOSE imply TRACE END, since

they close a path to the driver that is implicitly opened by TRACE.

Example 10 BEGIN
 20 TRACE
 ...

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 158

USER system variable

Purpose Contains the terminal number.

Format USER

Remarks The terminal number ranges from 1 to the number of HAI*Basic users. It is

always 1 in a single-user environment.

 The USER number is primarily meant to provide for a unique terminal

identification. You are then able to create a unique work file name for every
terminale running the same program.

 You must not alter the contents of USER.

Example 1100 OPEN (5) "WORK"+(USER:"0")

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 159

VAL function

Purpose Returns a numeric value derived from its string type argument.

Format Y=VAL(x$)

Remarks All embedded digits (0 to 9) are considered to constitute one numeric value.

 Every minus sign inverts the sign of the value. An even number of minus signs

yields a positive result. An odd number of minus signs yields a negative
result.

 The other characters are ignored.

Example VAL (-X1-2-Y3) yields the value -123.

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 160

VER function

Purpose Returns the HAI*Basic Run Time version.

Format VER

Remarks The version number can be displayed and printed.

Example 4500 PRINT @(70,4) VER:"#0.00"

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 161

VER$ function

Purpose Returns the name of the license holder of the HAI*Basic software.

Format VER$

Remarks The 30 characters name is include in the software at installation time.

 It can be displayed or printed.

Example 4300 PRINT (2) "License holder: " VER$

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 162

WRITE statement (file)

Purpose Writes a record to a direct of indexed file.

Format (1) WRITE (n IND=i MODE=m ERR=stno) var_list

 (2) WRITE (n IND=i$ MODE=m TRACK=t ERR=stno) var_list

Remarks n is the OPENed file.

 m is the multi-user mode and it serves for direct file extension.

 t is the number of the index in case of WRITing to an indexed file.

 The record is defined by the variables of the var_list.

(1)
Direct file The record with recordnumber i is written to a direct file.

 Direct files are not automatically extended when using a large index value. You

can extend a direct file by a special WRITE statement. Its format is:

 WRITE (n IND=r MODE=99 ERR=stno)

 r is the new highest possible index number.

 Insufficient disk space for file extension generates error code 18.

(2)
Indexed file The position of the index i$ is defined at file creation time (see the $HOST

driver).

 The indexed file is automatically extended when required.

 See also error codes 2 (old error code),
 4 index not valid,
 5 duplicate index,
 6 file extended,
 17 no more space available,
 52 incorrect identifier.

Rewrite
record Omission of the IND=i (direct file) or IND=i$ (indexed file) implies a rewrite of the

record read by the most recent READ action.
 You may READ a record, alter its contents (no the index on which the record is

read!) and reWRITE the record without the IND= option (See the example).

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 163

Multi-user A record can be locked after being written in case the file is shared (see the
OPEN shared (see the OPEN statement).

 The record is locked if no MODE option is specified.
 The record is not locked if MODE=16.

 A previous lock on a record in the same file is always cancelled unless

MODE=48. Then the lock on the previous record is retained and the newly
inserted is not locked.

 See also error code 22.

Example 6700 READ (6 IND=K$ ERR=9000) K$ A B2$ C$ D5
 ...
 ...
 6800 WRITE (6 ERR=9200) K$ A B2$ C$ D5

 Language features April 2010

HAIBAS.63x OVAL SOFTWARE Page: 164

WRITE statement (screen)

Purpose Moves a HAI*BAS window.

Format WRITE([0] [IND=W] MODE=1) appearance_list
 0 Optional CRT file number.
 W Window number. If there is no IND= then the current window is

assumed.

Remarks The only items currently supported in the appearance_list is the list of @()

coordinates and even for these the size of the window must not change.

 Any attribute appearance is ignored. "1" and "2" border types are also ignored

but may be required just to make the window size the same.

 This statement is not added as a result of popular demand but mainly because

window moving became available (see change for ACCEPT area under
temporary window). The statement may be enhanced or simplified in the future.
This depends on the response from marketing and programmers (in other
words, you).

Example 10 WRITE(MODE=1) "2" @(1,1) @(75,20)

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 165

3. DRIVERS

Introduction Drivers are components of the HAI*Basic susbsystem to control peripheral

hardware. The interface on HAI*Basic level is fairly standard on various
HAI*Basic implementations, although invariability is not completely guaranteed
on future HAI*Basic implementations. Moreover you will introduce hardware
dependancies in your program, when controlling particular hardware with
control code sequences.

 A second class of drivers provids for a uniform interface to the facilities of the

HAI*Basic subsystem and the host operating system. They allow you for
example to allocate a file or to communicate with other HAI*Basic users in a
multi-user system.

 The following drivers are available:

$CRT Allows to control the display and keyboard (apart from the standard language

features PRINT, ACCEPT and INPUT).

$DLK Allows to access the communication ports.

$FILE Allows to access any file, especially files that are not organised according to

the rules of the HAI*Basic subsystem (and do not have filename suffix HI?).

$HOST Allows to access facilities of the HAI*Basic runtime system and the host

operating system.

$NULL Allow the system to sleep.

$LPT Allows access to a printer.

$SPL Allows to write PRINT output to a spool file.

Statements The driver is OPENed like OPENing a file. The driver software is automatically

loaded from a file with file name suffix HAI (e.g. DLK.HAI for $DLK). Drivers
may be specified as being memory resident all the time (See chapter 'System
parameter file HAI.PAR'). Error 12 occurs if the driver is not known.

 The driver is CLOSEd like CLOSing a file. The memory of non-resident drivers

is freed.

 The function of the statements READ, WRITE, INSERT, DELETE, PRINT,

GET and PUT depends on the particular driver.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 166

Specification
 The drivers are specified on the following pages by giving all relevant

examples.

 The I/O options ERR= and EOF= are omitted from the examples.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 167

3.1. $CRT driver

Purpose Allows detailed control over display and keyboard functions (apart from the

HAI*Basic statements PRINT, ACCEPT and INPUT).

Display 4500 DIM LEN=2 L A E
 4510 DIM LEN=21 C$
 4520 DIM LEN=14 N
 4520 DIM LEN=30 I$

 4600 OPEN (4)"$CRT"

 4610 GET (4 SECTOR=1) I$

 4620 GET (4 SECTOR=2) L A E
 4630 PUT (4 SECTOR=2) L A E

 4640 GET (4 SECTOR=3) N

 4650 GET (4 SECTOR=4 TRACK=C) C$
 4660 PUT (4 SECTOR=4 TRACK=C) C$

 4670 GET (4 SECTOR=5) W1 W2

 4680 CLOSE (4)

Remarks I$ contains the screen identification.
 L contains the default printer attributes.
 A contains the default accept attributes.
 E contains the default error attributes.

 Hexadecimal values: 01 = Blinking (BB),
 02 = Dimmed (BD),
 04 = Underlined (BU),
 08 = Inversed video (BV),
 10 = (BM),
 20 = Special (see below).

 N contains the number of attribute definitions (NOATTR= in system parameter

file HAI.PAR).

 C contains the order number of the attribute control string (max. N).
 Values for C are: 1 = set attributes off,
 2 = BB,
 3 = BD,
 4 = BU,
 5 = BV,
 6 = BM,
 7 = special.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 168

 7 = special is only used if the default attribute byte contains 20 (see above).

 C$ contains the attribute control string (first byte is length).

 W1 contains the HAI*Basic window number.

 W2 contains the actual window identifier.

 Window identifiers above 49999 are used by the system. Currently these are:

 50000 HAI*BAS editor.
 50001 Statement tracing.
 51000 System and error messages.
 52000 Guidance help.
 52001 Explanation help.
 59999 Window coordinate validation.
 60000 Error retry window.
 65000 Visible full screen.
 65001 Physical screen.

Help The statement PUT (4 MODE=99) forces the current HELP value to be

effective without the program waiting for ACCEPT input.

Keyboard 4700 DIM LEN=14 T K

 4710 OPEN (4) "$CRT"

 4720 GET (4 MODE=98) T

 4730 GET (4 MODE=99) K

 4740 CLOSE (4)

Remarks T = 0 : No key present.
 T > 0 : At least one key present.

 K contains the HAI*Basic key code (see also chapter 'System parameter file

HAI.PAR').

 Use MODE=98 to check for presence of a key. Then MODE=99 to get the key

code (no echo on display).

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 169

PUT (MODE=98) $CRT

Purpose Forces display of function key guidance help

Format PUT (MODE=98) KeyList

Remarks KeyList List of function key codes to be displayed. Each key is defined by a

numeric constant or other expression. Any simple variable
should be DIM LEN=14.

 Key guidance is displayed in the order and format defined by HAI.PAR; the

sequence of codes in PUT (MODE=98) is unimportant.

 A value of 0 means guidance for the HELP key itself is displayed.
 If no list is supplied then the default display is only the HELP key.

 Forced guidance is automatically reset by the ACCEPT statement.

 PUT(MODE=99) without any expression list has historically been used for

forced guidance but is now effectively replaced by this statement.

 Note that PUT(MODE=99) with an expression puts a single code into the

HAI*BAS key buffer; it has no direct effect on the guidance display.

Example PUT(MODE=98) 0, 1, 12

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 170

3.2. $DLK driver

Purpose Allows to access communication facilities.

 4800 DIM LEN=3 N
 4810 DIM LEN=24 S$
 4820 DIM LEN=250 R$

 4900 OPEN (1) "$DLK"

 4910 READ (1 IND=N) R$
 4920 READ (1 IND=S$) R$
 4930 READ (1) R$

 4940 WRITE (1) R$

 4950 CLOSE (1)

Remarks R$ contains the information sent or received.

 Statement 4910 receives N bytes.
 N contains the number of bytes to be received.

 Statement 4920 receives until a sequence of at most 24 bytes as specified in

S$ is received. If the first character and the last character in S$ are equal, then
this character acts as delimiter between several possible strings.

 Examples:

 "ABC" Continue reading until the sequence "ABC" is received.

 "!ABC!" Same as the previous example.

 "*ABC*XYZ*" Continue reading until the sequence "ABC" or "XYZ" is received.

 ""!ABC!XYZ!" Same as the previous example.

 Use HAI*Basic function CHR in case of non-printable characters.
 Statement 4930 receives until a time-out condition occurs.

 Statement 4940 sends the contents of the variable list.

Error 1 Errors are always signalled by error 1 (this is different from other I/O!). The error code

from the driver is returned by COLUMN(1).

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 171

3.3. $FILE driver

Purpose Allows block-wise access to any file on the host operating system (normally

non-HAI*Basic files).

 5000 DIM LEN=2 F N U
 5010 DIM LEN=4 B
 5020 DIM LEN=12 F$
 5030 DIM LEN=128 B1$ B2$

 5100 OPEN (1 SECTOR=N) "$FILE"

 5110 READ (1 UNIT=U IND=F$ SECTOR=F MODE=99)

 5120 GET (1 TRACK=B SECTOR=F) B1$ B2$

 5130 PUT (1 TRACK=B SECTOR=F) B1$ B2$

 5140 WRITE (1 IND="CLOSE" SECTOR=F)

 5150 CLOSE (1)

Remarks Statement 5100 opens the driver and specifies access to at most N files at the

same time via driver $FILE. The maximum value for N is 16, the default is 1.

 Statement 5110 establishes a relationship between file F$ on unit U and

number F (F must be between 1 and N).
 F$ must be the complete file name.
 MODE=99 (if present) specifies that the file must be created if not yet present.

You can access the newly created file with PUT statements only.

 Statement 5120 reads block B (256 bytes) from the file identified with number F

into B1$ and B2$. The first block in the file has order number 1.

 GETting beyond end-of-file yields error code 18. The variables in the list (in this

example) are padded with character value 03 after GETting the last partly filled
block.

 Statement 5130 writes the contents of B1$ and B2$ (256 bytes) to block B in

the file identified with number F. The first block in the file has order number 1.

 Statement 5140 closes the file identified with number F. The number F can be

re-used to open another file.

 Statement 5150 closes the driver $FILE. All files opened via $FILE (and not yet

closed) are closed as well.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 172

3.4. $HOST driver

Purpose Allows to access facilities of the HAI*Basic runtime environment and the host

operating system.

Open/Close 100 OPEN (1) "$HOST"
 ...
 ...
 900 CLOSE (1)

Number of unit
definitions 200 DIM LEN=14 U

 210 READ (1 IND=12) U

 U is the number of units defined in HAI.PAR (max. 32)

Unit definition
 250 DIM LEN=14 U
 260 DIM LEN=30 U$

 270 READ (1 IND=13 UNIT=U) U$

 U is the HAI*Basic unit number.

 U must not be higher than the number returned with IND=12.

 U$ is the unit definition from HAI.PAR and may contain trailing spaces.

 Error 4 occurs if U is not valid.

Unit mapping
 150 DIM LEN=32 M$

 160 READ (1 IND=11) M$

 170 WRITE (1 IND=11) M$

 M$ defines the 32 HAI*Basic units for the current user by means of indexes to

the unit definitions table.

 M$ consists of 32 individual bytes with binary integer values.

 Error 63 occurs on WRITE if M$ contains incorrect unit definition number(s).

 Error 65 occurs on WRITE if M$ has incorrect length.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 173

Screen type 100 DIM LEN=14 S

 120 READ (1 IND=1) S

 S contains the screen definition number from the USERSCR= parameter in

system parameter file HAI.PAR.

Printer unit 300 DIM LEN=14 P

 310 READ (1 IND=21) P

 P contains the default printer unit number.

$DLK unit 400 DIM LEN=14 D

 410 READ (1 IND=31) D

 D contains the default $DLK unit number.

External memory
unit 450 DIM LEN=14 M

 460 READ (1 IND=41) M

 M contains the default external memory unit number.

System messages
 550 DIM LEN=60 M1$ M2$
 560 DIM LEN=40 M3$

 570 READ (1 IND=61) M1$

 580 READ (1 IND=62) M2$

 590 READ (1 IND=63) M3$

 M1$ contains the text 'Returning to program selection menu'.

 M2$ contains the text 'Load program disk and press the CLEAR key'.

 M3$ contains the text 'Printer not ready. Unit'.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 174

System info 600 DIM LEN=14 I O
 610 DIM LEN=30 V$ N$

 620 READ (1 IND=71) I

 630 READ (1 IND=72) O

 640 READ (1 IND=73) V$

 650 READ (1 IND=74) N$

 I contains the IOS version number.

 O contains the option bits.

 V$ contains the system version.

 N$ contains the host O.S. name.

License number
 700 DIM LEN=14 L

 710 READ (1 IND=75) L

 L contains the license number.

Date and time
 750 DIM LEN=14 D T

 760 READ (1 IND=76) D

 770 READ (1 IND=77) T

 D contains the date from the host operating system, which can be different from

the date in HAI*Basic system variable DAY. Their date formats are identical.

 T contains the time.

Free system memory
 780 DIM LEN=14 F

 790 READ (1 IND=78) F

 F contains the number of free bytes as given by the host operating system.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 175

Directory info
 800 DIM LEN=2 U
 810 DIM LEN=12 F$

 820 GET (1 UNIT=U) F$

 F$ contains the first/next file name read from the directory.

 Pos Len
 1 1 Space
 2 8 File name (e.g. PROG1B)
 10 3 File name extension (e.g. HIB)

 Error 3 occurs if no HAI*Basic file exists at all.

 Error 19 (EOF) occurs at the end of the directory.

 Use consecutive GET's without other file accesses in between (to build a file

name table is needed).

Unit info 850 DIM LEN=2 U
 860 DIM LEN=14 F T S M

 870 GET (1 UNIT=U MODE=98) F T S M

 U contains the unit number.

 F contains the number of free clusters on the unit.

 T contains the total number of clusters on the unit.

 S contains the cluster size in bytes.

 M contains the type of medium:
 1 Fixed disk (non-removable)
 2 Removable (e.g. diskette)
 3 Not known

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 176

Create DIRECT file
 900 DIM LEN=2 U
 910 DIM LEN=6 F$
 920 DIM LEN=14 L H R
 930 DIM LEN=32 D$

 940 INSERT (1 UNIT=U IND=F$) L H R D$

 U contains the unit number

 F$ contains the 1 to 7 character name of the file to be created followed by D

(e.g. DTESTD).

 L contains the lowest record number.

 H contains the highest record number.

 R contains the record length.

 D$ contains the file description.

 Error 5 occurs if the file already exists.

 Error 18 occurs if the disk is full.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 177

Create INDEXED file
 950 DIM LEN=2 U F
 960 DIM LEN=6 F$
 970 DIM LEN=14 N R P K
 980 DIM LEN=32 D$

 990 INSERT (1 UNIT=U IND=F$ SECTOR=F) N R P K D$

 U contains the unit number.

 F$ contains the 1 to 7 character name of the file to be allocated followed by X

(e.g. XTESTX).

 F contains the index block filling percentage (default 81 %).

 N contains the number of records.

 R contains the record length.

 P contains the key position within the record.

 K contains the key length.

 D$ contains the file description.

 Error 5 occurs if the file already exists.

 Error 18 occurs if the disk is full.

Create BASIC file
 1000 DIM LEN=1 U
 1010 DIM LEN=6 F$
 1020 DIM LEN=14 N
 1030 DIM LEN=32 D$

 1040 INSERT (1 UNIT=U IND=F$)N D$

 U contains the unit number

 F$ contains the 1 to 7 character name of the file to be allocated followed by B

(e.g. BTESTB).

 N contains the number of bytes to be allocated.

 D$ contains the file description.

 Error 5 occurs if the file already exists.

 Error 18 occurs if the disk is full.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 178

Create CODE file
 1050 DIM LEN=2 U
 1060 DIM LEN=6 F$
 1070 DIM LEN=14 N
 1080 DIM LEN=32 D$

 1090 INSERT (1 UNIT=U IND=F$) N D$

 U contains the unit number

 F$ contains the 1 to 7 character name of the file to be allocated followed by C

(e.g. CTESTC).

 N contains the number of records.

 D$ contains the file description.

 Error 5 occurs if the file already exists.

 Error 18 occurs if the disk is full.

Create ASCII file
 1100 DIM LEN=2 U
 1110 DIM LEN=6 F$
 1120 DIM LEN=14 N

 1130 INSERT (1 UNIT=U IND=F$) N

 U contains the unit number

 F$ contains the 1 to 7 character name of the file to be allocated followed by A

(e.g. ATESTA).

 N contains the number of bytes to be allocated.

 Error 5 occurs if the file already exists.

 Error 18 occurs if the disk is full.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 179

Delete file 1150 DIM LEN=2 U
 1160 DIM LEN=6 F$

 1160 DELETE (1 UNIT=U IND=F$)

 U contains the unit number.

 F$ contains the 1 to 8 character file name. Program files have the format

xx..xxB and xx...xC.

Rename file 1200 DIM LEN=2 U
 1210 DIM LEN=6 F1$ F2$

 1220 WRITE (1 UNIT=U IND=F1$) F2$

 U contains the unit number.

 F1$ contains the OLD 1 to 8 character file name.

 F2$ contains the NEW 1 to 8 character file name.

 Program files have the format xx..xxB and xx...xC.

 Error codes: 4 Wrong file name.
 5 New name already exists.
 12 Old name not found.
 22 Old file in use.

Read directory
header 1300 DIM LEN=2 U
 1310 DIM LEN=6 F$
 1320 DIM LEN=250 H$

 1330 READ (1 UNIT=U IND=F$)H$

 U contains the unit number.

 F$ contains the file name.

 H$ contains the directory header block. H$ contains dummy information in case

of an ascii or overlay file (because those files do not have a header block).:
 32 spaces
 3 zero bytes
 1 byte record type

 Error 3 occurs if file F$ is not present.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 180

Write directory
header 1400 DIM LEN=2 U
 1410 DIM LEN=6 F$
 1420 DIM LEN=250 H$

 1430 WRITE (1 UNIT=U IND=F$ MODE=99) H$

 U contains the unit number.

 F$ contains the file name.

 H$ contains the directory header block.

 Use this statement very carefully, normally only to reset the 'open file bit'.

 Error 3 occurs if the file F$ is not present.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 181

READ (IND=79) $HOST

Purpose Gets HELP file search path string

Format READ (n, IND=79) P$

Remarks n $HOST file channel number.
 P$ DIM LEN=256 string variable to receive HELP path.

 The search path is set by HAI.PAR HELPPATH= and used whenever a HELP

file is opened. This statement allows the current setting to be accessed.

Example DIM LEN=256 P$ \ OPEN(1) "$HOST" \ READ (1, IND=79) P$

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 182

WRITE (IND=79) $HOST

Purpose Updates HELP file search path string

Format WRITE (n, IND=79) P$

Remarks n $HOST file channel number.
 P$ DIM LEN=256 string variable containing new HELP path.

 The search path is set by HAI.PAR HELPPATH= and used whenever a HELP

file is opened. This statement allows the default setting to be changed.

Example P$="../french;../default" \ WRITE (1, IND=79) P$

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 183

3.5. $LPT driver

Purpose Allows detailed control over a printer (apart from the HAI*Basic PRINT

statement).

 4000 DIM LEN=14 N L R D P
 4010 DIM LEN=30 I$

 4020 OPEN (3) "$LPT"

 4030 GET (SECTOR=1) I$
 4040 GET (SECTOR=2) N
 4050 GET (SECTOR=3) L
 4060 GET (SECTOR=4) R
 4070 GET (SECTOR=5) D
 4080 GET (SECTOR=6) P L2

 4090 PRINT (3) <expr.list>

 4100 PUT (3) <expr.list>

 4110 CLOSE (3)

Remarks I$ contains the printer identification.

 N contains the number of characters per line.

 L contains the left margin.

 R contains the right margin.

 D contains the number of lines per page.

 P contains the page number.

 L2 contains the absolute line number.

PUT statement
 Any information (until a zero byte) in the expression list of the PUT statement is

sent to the printer.

 Not: DOS does not send byte value 26 (hex 1A) to the printer.

Warning The regular output mechanism assumes unchanged current position.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 184

PUT(SECTOR=2) statement $LPT

Purpose Changes line length

Format PUT(f, SECTOR=2) L
 f File number.
 L Line length. This must be a LEN=14 numeric variable or a numeric

expression. Valid line lengths are from 1 to 1000; -1 means there is no
limit on the line length and new lines will not be inserted by the driver.

Remarks The complementary statement GET(SECTOR=2) has long existed in HAI*BAS.

PUT(SECTOR=2) now allows paper sizes to be changed after opening the file
or device.

 The printer and spooler can also specify the line length by MODE= on the

OPEN. For files, MODE= has a different use to specify the opening mode of the
file.

 By default, files have no line length limit. The printer and spooler default line

lengths are determined by HAI.PAR.

 Changing the line length has the same effect as setting the right margin but is

independent of the left margin.

Example PUT(1, SECTOR=2) -1

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 185

PUT(SECTOR=3) statement $LPT

Purpose Changes left margin

Format PUT(f, SECTOR=3) L
 f File number.
 L Left margin. This must be a LEN=14 numeric variable or a numeric

expression. Valid line lengths are from 1 to the right margin.

Remarks The complementary statement GET(SECTOR=3) has long existed in HAI*BAS.
 PUT(SECTOR=3) now allows paper sizes to be changed after opening the file

or device.

 The effect of a new left margin starts on the next line.
 The left margin can also be specified by SECTOR= on the OPEN.

Example PUT(1, SECTOR=3) 10

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 186

PUT(SECTOR=4) statement $LPT

Purpose Changes right margin

Format PUT(f, SECTOR=4) R
 f File number.
 R Right margin. This must be a LEN=14 numeric variable or a numeric

expression. Valid right margins are from the left margin to 1000; -1
means there is no limit on the line length and new lines will not be
inserted by the driver.

Remarks The complementary statement GET(SECTOR=4) has long existed in HAI*BAS.

PUT(SECTOR=4) now allows paper sizes to be changed after opening the file
or device.

 By default, files have no right margin. The printer and spooler default right

margins are determined by HAI.PAR.

 Changing the right margin has the same effect as setting the line length but is

relative to the left margin.

Example PUT(1, SECTOR=4) -1

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 187

PUT(SECTOR=5) statement $LPT

Purpose Changes page depth

Format PUT(f, SECTOR=5) P
 f File number.
 P Page depth. This must be a LEN=14 numeric variable or a numeric

expression. Valid page depths are from 1 to 1000.

Remarks The complementary statement GET(SECTOR=5) has long existed in HAI*BAS.

PUT(SECTOR=5) now allows paper sizes to be changed after opening the file
or device.

 The driver only maintains an absolute line number. The LINE() function

converts this to a line within the page by the remainder after division by the
page depth. Changing the page depth will therefore affect both the page
number and the line number within the page.

 The left margin can also be specified by TRACK= on the OPEN.

Example PUT(1, SECTOR=5) 66

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 188

3.6. $NULL driver

Purpose Allows the system to 'sleep' for a period of time

Format WRITE (n SECTOR=S)

Remarks n is the file number of the $NULL driver

 S is the number of seconds the system should 'sleep'. This may not exceed 30

seconds.

 READ has the same effect but forces and EOF error 19.

 The BREAK and INTERRUPT keys are polled immediately after a sleep delay.

This improves the response to use of control C to interrupt a running program.

Example 4000 OPEN (3)"$NULL"
 4010 REM "Sleep for 10 seconds" \
 WRITE (3 SECTOR=10)

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 189

3.7. $SPL driver

Purpose Allows to write PRINT output to a SPOOL file.

 PRINTing to the $SPL driver is similar to PRINTing to the $LPT driver. There

are differences because the PRINT output is sent to a file and not to a printer.

 5000 OPEN (4) "$SPL"

 5010 PRINT (4) <expr.list>

 5020 CLOSE (4)

Spool file The runtime system writes the PRINT output to a HAI*Basic ascii format spool

file named SPnnn.HAI (nn is the HAI*Basic user number).
 The PRINT output is appended at the end of the spool file. The file is created if

it does not yet exist.

 It is not possible to specify the line length and the page depth at OPEN time.

 The normal file I/O errors may occur (including the multi-user file lock

conditions).

 Error 12 indicates either that the driver system file SPL.HAI is not present or

that a system failure has occured when writing to the spool file.

 The spool file is CLOSEd when CLOSing the $SPL driver.

 The PRINT information can be read from a spool file by the input statement.

The spool utilities of the HAI*Line packages INPUT and PRINT spool file
information.

Character substitution
 Character substitution (see PRTSUB in parameter file HAI.PAR) is not

performed. It is done when printing the contents of the spool file.

Note A previous version of the Run Time System allowed to get the number of bytes

still available for the spool file (using a READ statement with MODE=4). This
feature is not used anymore since the spool file is now extended when
required. The present Run Time always returns the value 64 kBytes.

 Error 18 indicates a full disk.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 190

4. NATIVE FUNCTIONS

Native language Functions and Routines are useable within HAI*BAS as normal FUNC (or
FUNC$) and CALL statements but the executed code is C code compiled for the native
language of the processor.

Currently, the module name must start with a "$" character. For example (SORT is explained
more fully later):

 CALL "$SORT" (1, VAR A$[], 1, 25, C$)

On CCP/M and DOS systems, native functions are separately loaded modules (as are device
drivers). For example, the "$SORT" Routine is held in "SORT.HAI".

On OS/2 and Unix systems, native functions are linked as part of the BASIC or CODE
interpreter.

Currently available native Functions are "$COMPARE" and "$SORT". These replace the
Release 4 SORT object overlay which is no longer supported by Release 5 HAI*BAS.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 191

4.1. $COMPARE Function

Purpose $COMPARE compares 2 strings according to user supplied criteria, in the

same manner as the SORT Routine.

Format R = FUNC "$COMPARE" (1, S1$, S2$, C$)
 R Result of comparison
 +1 if S1$ is greater than S2$
 0 if S1$ is equal to S2$
 -1 if S1$ is less than S2$
 1 Function code (constant).
 S1$ 1st string.
 S2$ 2nd string.
 C$ Sorting criteria as a series of 3 byte specifications
 (1) Length of string subfield.
 (2) = 0 Ascending order.
 = 128 Descending order.
 (3) = 0 Alpha.
 = 128 Numeric.
 These substring specifications may be repeated as necessary.

Remarks S1$ and S2$ can contain a mixture of numeric and alpha fields; each of these

can be specified independently in C$ for the comparison.

 The active length of C$ must always be a multiple of 3.

 Comparison automatically pads "short" strings with binary 03 characters (the

HAI*BAS filler), up to the maximum length or the active length of the longer
item, whichever is shorter. This is the "comparison length"

 String characters are compared by their ASCII values (without weighting).

Numerics are compared as binary values; negative values are less than
positive values.

 If no character difference is found and all substrings specified by C$ have been

completed BEFORE reaching the comparison length then the strings are equal,
regardless of their length.

 If the comparison length is reached before or at the same time as the end of C$

then the longer string is greater.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 192

Example 10 REM . "A$[] 30 character name, 14 digit number" \
 DIM LEN=36 A$[50]
 20 REM . "C$ Criteria" \
 DIM LEN=6 C$
 50 REM "Compare strings" \
 C$=CHR(30)+CHR(0)+CHR(0)+CHR(6)+CHR(128)+CHR(128) \
 ON FUNC "$COMPARE" (1, A$[1], A$[2], C$)+2 GOTO 100,200,300
 100 REM "A$[1] < A$[2]" ..
 200 REM "A$[1] = A$[2]" ..
 300 REM "A$[1] > A$[2]" ..

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 193

4.2. $SORT Routine

Purpose $SORT sorts a string array according to user supplied criteria.

Format CALL "$SORT" (1, VAR A$[], F, L, C$)
 1 Function code (constant).
 A$[] 1 dimensional array to be sorted.
 F First array element number.
 L Last array element number.
 C$ Sorting criteria as a series of 3 byte specifications
 (1) Length of string subfield.
 (2) = 0 Ascending order.
 = 128 Descending order.
 (3) = 0 Alpha.
 = 128 Numeric.
 These substring specifications may be repeated as necessary.

Remarks A$[] can contain a mixture of numeric and alpha fields and each of these can

be specified independently in C$ to determine the sort sequence.

 The first element number of a HAI*BAS array is 1. F and L are both inclusive

values so 1, DIMOF(A$[], 1) can be used to specify the whole array. F and L
are checked for validity:

 F >= 1 AND F <= L AND L <= DIMOF(A$[], 1)

 The active length of C$ must always be a multiple of 3.

 See the COMPARE Function for details of element comparison.

Example 10 REM . "A$[] 30 character name, 14 digit number" \
 DIM LEN=36 A$[50]
 20 REM . "C$ Sort criteria" \
 DIM LEN=6 C$
 30 REM . "N Number of A$[] elements used" \
 DIM LEN=6 N
 40 REM "Read data items into A$[]" \
 N = FUNC "READA" (VAR A$[])
 50 REM "Sort A$[] by ascending alpha then descending numeric" \
 C$=CHR(30)+CHR(0)+CHR(0)+CHR(6)+CHR(128)+CHR(128) \
 CALL "$SORT" (1, VAR A$[], 1, N, C$)

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 194

5. SYSTEM PARAMETERS

5.1. Parameter file HAI.PAR

Introduction The file HAI.PAR contains all the system related parameters for HAI*Basic. It

holds information to tailor the HAI*Basic runtime environment to different
hardware configurations:

 • Printer parameters,
 • Display and keyboard parameters,
 • Memory size (HAI*Basic user size, memory resident drivers),
 • Organisation of disk space,
 • Language dependant system messages.

 The HAI*Basic program can retrieve certain information from HAI.PAR

accessing the $HOST driver (See chapter 'Drivers').

 HAI.PAR is read fully when starting HAI*Basic or HAI*Code interpreters.

Format HAI.PAR has plain ascii format. You can update the file with almost any text

editor.

 Parameters information starts at position 1 and ends with the first space, tab,

carriage return or line feed.

 Character strings are enclosed within quotes and they may contain embedded

spaces.

 Non-printable characters are defined by escape character backslash \ followed

by the numeric ascii value. The backslash itself is represented by double \\.

 Tab characters in character strings are not expanded. All keywords must start

in position 1 of a line. Positional (non-keyword) parameters must be specified in
the given order and format.

 Comment lines start with an asterisk * in position 1 of the line.

 Blank lines are allowed; they do not occupy memory space after loading.

 The remainder of this chapter presents the definition of the items in HAI.PAR

giving examples and explanatory text. The examples are choosen from a
HAI*BASIC implementation on IBM PC running PCDOS.

Note The asterisks (mandatory at the start of a comment line in file HAI.PAR) are

omitted in this document.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 195

5.1.1. General parameters

Version The format of HAI.PAR is the second version of its kind. That's why it MUST

start with:

 VERSION=2

Option bits GOPT01="0000000010000000"

 The 9th 'bit' shows whether the editor is included (bit=1) when loading the

HAI*Basic source interpreter or not (bit=0). So, this bit shows whether the Run
Time System is running Basic or Code.

 If you want swap decimal points and comma's in all HAI*Basic mask

operations, specify:

 GOPT01="0000000010001000"

User space TXTSIZ=40

 Specifies the amount of memory space for the HAI*BASIC program and its

data. The value must be between 16 and 64 Kbytes.

Messages The following system messages are to be translated to the client's language:

 G1END1="Returning to program selection menu"
 G2END1="Load program disk and press the HOME key"
 GPROF1="Printer not ready. Unit"
 E48TXT="You did not install this module"
 E96TXT="Usernumber is not implemented"

 The maximum size of these messages is 60 characters. Center the messages

G1END1 and G2END1 on the display by adding leading spaces.

Global data The global data area contains at most 100 characters:

 GWND01="UMMNU0A2YN[]0660101 D C -.:?:/ DEMONSTRATIE HAI "

 Pos Len Description
 1 5 Name of the menu file.
 6 1 always 0: use file CONT0.
 7 1 Diskette unit designator.
 8 1 Number of decimal places for national currency:
 0 : None
 2 : Two decimals
 9 1 Character for Yes answer.
 10 1 Character for No answer.
 11 1 Left hand side input field delimiter.
 12 1 Right hand side input field delimiter.
 13 1 Date format:
 0 : DDMMYY (European)
 1 : MMDDYY (USA)
 2 : YYMMDD (ISO)
 14 2 Default number of lines per page

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 196

 16 2
 18 2
 20 1
 21 5 Right half of company number
 26 2 Suffix characters for debit balances
 28 2 Suffix characters for credit balances
 30 1 Prefix character for positive fields
 31 1 Suffix character for negative fields
 32 1 Prefix character for positive fields
 33 1 Suffix character for negative fields
 34 1 Date separator
 35 1 Hours and minute separator
 36 1 Wild card character
 37 1 Retrieve key character
 38 1 Name search character
 39 30 Company name

Resident drivers
 HAI*Basic drivers and other loadable components may be specified as

permanently memory resident.
 The other drivers are loaded when required. You can specify at most 9 drivers

to be memory resident. The minimum set is:

 GPRMD1="CRT.HAI" Video driver
 GPRMD2="FM.HAI" File manager
 GPRMD3="HOST.HAI" Interface to host O.S. driver
 GPRMD4="LPT.HAI" Printer driver

 Other drivers are DLK.HAI and FILE.HAI

 !! GPRMD is no longer required in HAI.PAR

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 197

DEBUG= option HAI.PAR - General

Purpose Memory area validation

Format Debug=l

Remarks l is the level of protection.

 Memory areas can be (at least partly) validated between every HAI*BAS

statement. This is intended to trap memory problems corruption problems as
soon as possible.

 This should be ideally be set to l=1 for maximum protection. However, the

system does run noticeably slower when validation is enabled.

 If validation detects an error then ERROR 195 will be reported after every

statement. Please inform Holland Automation International of such an
occurance, along with the Y code and the circumstances.

DOS system DEBUG=1 has no effect on DOS systems to free additional memory.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 198

ERRLOG option HAI.PAR - Error logging

Format ERRLOG[uu]=Level[,MaxLine[,"LogName"]]

Remarks ERRLOG Parameter identifier. By default this applies to all HAI*BAS users

but a user number can be added to control logging for that user.
 Level Logging level:
 0 None. Error logging is suppressed.
 1 Displayed (default). Log displayed events only.
 2 All. Log all events.
 MaxLine The maximum line number at which a log entry can start. It may,

however, extend for several lines past MaxLine. This value
prevents the log file growing too large. The default is 100.

 LogName The name of the log file. By default, this is "ERROR.LOG".

 A temporary file is also used for logging. The name is created by replacing the

file extension with ".TMP".

Example ERRLOG=1,300
 ERRLOG9=2,500,"SPECIAL.LOG"

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 199

FKEY() option HAI.PAR - Screen

Purpose Names a HAI*BAS function key number.

Format FKEY(num)="text"

Remarks num numeric function key value. 0 is reserved for Help itself.
 text name inscribed on the keyboard key.

 FKEY() must be given to enable CUA style function key guidance for a key. All

ACCEPTable named keys appear in all guides, unless turned off by .nofkey in
the Help file.

Position This option applies to the particular screen number nn and must appear

between the appropriate SCREENnn and ENDSCR lines.

Examples FKEY(0)="F1"
 FKEY(1)="Enter"

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 200

FUNC option HAI.PAR - Printer

Format FUNC="File"

Remarks FUNC Parameter identifier. This is only recognised in printer parameters, ie

between PRINTnn and ENDPRT. It may appear anywere in this area
where an identifier can be used.

 File The name of the HAI*BAS Function used as a print handler.

This should be specified as a 5 letter name so the "B.HIB" or
"C.HIC" is appended as appropriate for the BASIC or CODE
interpreter.

 The ENTRY and RETURN parameters for the Function are fixed by the

system; see above for a full description of using a print handler Function.

Example FUNC="PHAND"

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 201

GUIDE and EXPLAIN options HAI.PAR - Screen

Purpose Sets window design details for Help guidance and explanation windows,

respectively.

Format GUIDE=1
 "border"

 EXPLAIN=1
 "border"

 =1 number of guidance window options that are supplied. Currently only 1

option is allowed.

 border defines the window design, and must be a string of "0", "1" or "2" (for no,

single or double line border) optionally followed by a "+" to put a blank column
at the left and right borders.

Remarks The window design can only be altered for .version 2 help files. Old files
 always have a double line border and no blank column (ie "2").

Position This option applies to the particular screen number nn and must appear

between the appropriate SCREENnn and ENDSCR lines.

Examples GUIDE=1
 "0"
 EXPLAIN=1
 "1+"

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 202

HAISHARE option HAI.PAR - System

Format HAISHARE="File"

Remarks HAISHARE Parameter identifier. This must appear before any other identifier in

HAI.PAR, except for USERID and VERSION.
 File The name of the file used to control sharing of HAI*BAS resources. By

default this is "/usr/tmp/haishare" on Unix systems and "haishare" on all
other implementations.

 Earlier versions of HAI*BAS release 5 used "/usr/tmp/HAI5_GLOBAL" on Unix

systems. Since this prevents coexistence of incompatible HAI*BAS 5 releases,
it is ESSENTIAL that

 HAISHARE="/usr/tmp/HAI_GLOBAL"

 is used whenever there is a possibility that earlier versions may be used.

 Since "HAI5_GLOBAL" is not a suitable DOS file name, the change to

haishare" is essential to allow for DOS workstaions on Unix networks in the
future.

 The CODE interpreter control file for limiting participating stations to the

licensed number uses the same path name as the HAISHARE file but is named
"hai_pill".

Example HAISHARE="../heshare/haishare"

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 203

HELPOPT option HAI.PAR - General

Purpose Provides option settings for Help testing.

Format HELPOPT="num"

 num The Help options value.

Remarks Currently 2 bits are recognised in Help options:

 +1 causes the current Help context number to always appear in the

guidance.
 +2 ensures the Help file is closed whenever waiting for a key so that

editing is easier in a multi-tasking environment.

Position General option, therefore not to be placed in any device specific section of

HAI.PAR.

Examples HELPOPT=3

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 204

HELPPATH option HAI.PAR - General

Purpose Describes the search path for opening Help files.

Format HELPPATH="paths"

 paths A semicolon separated list of directory paths that are prefixed in turn to

the help file name.

Remarks This is unchanged from Release 4 Help files.

 If no HELPPATH is supplied a system specific default is used (\ha\hahelp for

DOS and OS/2) and then the current directory.

Position General option, therefore not to be placed in any device specific section of

HAI.PAR.

Examples HELPPATH="\ha\hehelp;\ha\hahelp02;."

 to search the \ha\hahelp, \ha\hahelp02 and finally the current (.) directories.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 205

MINFREE option HAI.PAR - Memory

Purpose Specifies minimum free memory, in kilobytes, required before HAI*BAS can

start.

Format MINFREE=freeK

Remarks MINFREE Parameter identifier.
 freeK Minimum free memory, in Kilobytes

 Minimum free memory is tested once during system start up. This is done

immediately before attempting to load the START program; in other words,
after all system memory requests (such as CRT attributes, printer parameters
etc) have been satisfied.

 In the BASIC interpreter, the comparison value is roughly the same as the initial

SHOW FREE value.

 MINFREE is not used on OS/2 and Unix systems.

Example MINFREE=300

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 206

OUT_FF option HAI.PAR - Printer

Format OUT_FF=count,hexchars

Remarks OUT_FF Parameter identifier. This is only recognised in printer

parameters, ie between PRINTnn and ENDPRT. It may appear
anywere in this area where an identifier can be used.

 count Number of hexchars that follow.

 hexchars Hexadecimal representation of characters used for output of a

form feed to the printer, separated by commas.

 By default, the form feed character is not used; repeated line feeds are used for

all vertical positioning. This ensures the greatest compatibility, at some cost in
speed.

 When OUT_FF is given, the printer driver will use the control string whenever a

vertical positioning goes on to a new page. This may be caused by HAI*BAS
control FF or a vertical @() position that goes to a line before the current line,
such as @(1,1).

Example OUT_FF=1,0c

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 207

PROGMEM option HAI.PAR - General

Purpose Define the maximum total memory that can be used by a single process for

program and data memory.

Format PROGMEM=x

Remarks x is the number of kBytes to allow for program and data memory.

 PROGMEM is not an absolute limit since all data areas must remain in

memory. Any space left is used to retain global Functions and Routines.

 If 2 data areas are in use, one using 30 kB and the other 20 kB

 The default is 200 kB for CCP/M and DOS systems and 300 kB for Unix and

OS/2 systems.

Position General option, therefore not to be placed in any device specific section of

HAI.PAR.

Example PROGMEM=400

 If 2 data areas are in use, one using 30 kB and the other 20 kB then up to 350

kB will be used to retain programs in memory.

Note PROGRAM replaces DATSIZ and TXTSIZ

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 208

RETRYWIN option HAI.PAR - General

Purpose Specifies text for system error retry window.

Format RETRYWIN=Lines
 "Line 1"
 "Line 2"
 ...

Remarks RETRYWIN Parameter identifier.
 Lines The number of lines of text to appear in the retry window. This

should not exceed 3 and is followed by the specified number of
lines of text.

 The retry window occupies a fixed position near the middle of the screen. The

client area has 6 rows of 38 columns each.

 When a retryable error occurs, the bottom 2 rows show the HAI*BAS error

message.

 When the window appears on the screen, the operator has 5 seconds to

respond. After this time the window is cleared and a retry is made
automatically. In the continued absence of operator input, up to 10 retry
attempts are made.

 When there is no RETRYWIN= in HAI.PAR there is a fixed delay of 2 seconds

between each retry and up to 10 attempts.

When? The following DOS error cause operator controlled retrying:

 • Error action 7 (retry after operator interaction) on disks only.
 • Error class 5 (hardware failure), error locus 3 (network).
 • Critical error code 12 (general failure).
 • Extended error code 31 (general failure), error locus 3 (network).

Example RETRYWIN=2
 " A critical error has occurred"
 " Enter=Retry ctrl-C=Abort"

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 209

SWAPPATH option HAI.PAR - General

Purpose Identify the directory path(s) used to swap out HAI*Basic variables.

Format SWAPPATH=path1[;path2][;path3]...

Remarks path specifies the directory to which the HAI*Basic variables are swapped.

 The default SWAPPATH= applies to all HAI*Basic user numbers.

 When a non-zero user number is put before the "=", as in:

 SWAPPATH11=

 then this only applies to that user (11 in the example above).

 Swapfiles are named "uuVcc.SWn" where uu is the HAI*Basic user number, cc

is the current FUNCtion child count and n = 1,2 or 3.

 There are two different swapfiles:
 "*.SW1" Swapfiles which hold the actual data variable values.
 "*.SW2" Swapfiles which hold the details of parent variables that have

been temporarily overlaid by child variables at the same time.
 "*.SW3" Swapfiles which hold the COMMON variables.

Default If no SWAPPATH= is specified then a default of "." (the current directory) is

used.

Example SWAPPATH="I:;."
 SWAPPATH10="C:;D:;."

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 210

USERID option HAI.PAR - System

Format USERID="File"

Remarks USERID Parameter identifier. This must appear before any other

identifier in HAI.PAR, except for HAISHARE and VERSION. File
The name of the file used to convert user identification to a
HAI*BAS user number. By default this is "userid.par" on all
systems that require it.

 The format of "userid.par" remains unchanged from earlier versions, apart from

the changes for OS/2 networks to incorporate the computer name into the user
identification.

Example USERID="../heshare/userid.par"

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 211

5.1.2. Disk(ette) unit parameters

Unit map The (at most) 32 logical unit numbers of HAI*Basic are mapped onto disk(ette)

space definitions. A disk(ette) space is a whole disk(ette) or a section of a
disk(ette).

 For PCDOS/MSDOS a logical unit designates a (sub-)directory.

 The keyword for unit mapping is UMP10x, where x specifies the user number. If

x=0, this specifies the default unit mapping which is used when no
corresponding unit mapping for a user can be found.

 UMP101=1,13,12,11

 This means:
 HAI*Basic unit nr. 1 refers to disk(ette) space definition nr. 1
 HAI*Basic unit nr. 13 refers to disk(ette) space definition nr. 13
 HAI*Basic unit nr. 12 refers to disk(ette) space definition nr. 12
 HAI*Basic unit nr. 11 refers to disk(ette) space definition nr. 11

 Looking at the example of the disk(ette) space definition table below, we see

the HAI*Basic units 1 to 4 refer to:

 C:\HE\HEDATA
 A:\
 C:\HE\HEPROG
 C:\HE\HESYST repectively.

 These definitions are only relevant for HAI*Basic source interpreter systems

and at start-up time for code interpreter systems.

 The usermap can be defined per individual user in a multi-user environment. A

second user could have the definition:

 UMP102=2,13,12,11

 In code interpreter systems the PMENU program takes over control over these

specifications (per company and per user). This allows to switch easily between
the datafiles of different administrations (multi-company).

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 212

Disk space definitions
 The space specifications (for MSDOS) are prefixes for the file names.

 UNQTY=13 No. of space definitions.

 UNITS Start of list.
 "C:\\HE\\HEDATA\\HEDATA01\\" 1 Datacompany 1
 "C:\\HE\\HEDATA\\HEDATA02\\" 2 Datacompany 2
 "C:\\HE\\HEDATA\\HEDATA03\\" 3 Datacompany 3
 "C:\\HE\\HEDATA\\HEDATA04\\" 4 Datacompany 4
 "C:\\HE\\HEDATA\\HEDATA05\\" 5 Datacompany 5
 "C:\\HE\\HEDATA\\HEDATA06\\" 6 Datacompany 6
 "C:\\HE\\HEDATA\\HEDATA07\\" 7 Datacompany 7
 "C:\\HE\\HEDATA\\HEDATA08\\" 8 Datacompany 8
 "C:\\HE\\HEDATA\\HEDATA09\\" 9 Datacompany 9
 "C:\\HE\\HEDATA\\HEDATA010\\" 10 Datacompany 10
 "C:\\HE\\HEDATA\\HEDATA\\" 11 Datacompany
 "C:\\HE\\HESYST\\" 12 Runtime files
 "C:\\HE\\HEPROG\\" 13 Program files
 "A:\\" 14 Diskette unit.
 ENDUNITS End of list.

 According to DOS conventions a single point . refers to the current

subdirectory. Two points .. refer to the next higher level subdirectory.
 This feature is particularly useful if the HAI*Basic directory structure is part of

the file structure in a Local Area Network.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 213

5.1.3. Serial communicaton parameters

$DLK $DLK is a simple communication driver with an interface to HAI*Basic.

 USERDLK=1,1,1 specifies the default unit per user (3 users in this

example).

 DLK1 Unit type for the driver.

 "AX:" Unit name.

 0a,0a Time out (hex) for OPEN and normal communication

respecively.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 214

5.1.4. Display/keyboard parameters

Display/Keyboard
 USERSCR=1,1,2 Specifies the type of display and keyboard per user (3

users in this example)

 Use comma, semicolon or colon as delimiter in the following definitions. Space

indicates end-of-parameters and start-of-comment. Values are in hexadecimal
format.

 SCREEN1 Display/keyboard type number 1 (ANSI color display in

this example).

Default attributes
 0,20,a0

 These hexadecimal values specify the default attributes for PRINT-to-display,

ACCEPT field and HAI*Basic error messages respectively.

 The one-byte values are interpreted as individual bits:
 01 = BB
 02 = BD
 04 = BU
 08 = BV
 10 = BM
 20 = Extra atrribute
 See below (display attributes) for more explanation.

 You can suppress the bleep for HAI*Basic errors and the STOP statement by

setting the high-order bit of the third value (a0=80 OR 20 in our example).

Roll-up/Tab The following hexadecimal values define the number of the line just above the

minimum HAI*Basic roll-up area and the number of spaces for the HAI*Basic
HT (tab) function respectively:

 16,a

Time out The first value fo the next pair of hexadecimal values must be zero. The second

value specifies the maximum time between the bytes of a mulit-byte key
sequence in units of milliseconds.

 0,6

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 215

Type TYPE=2

 Identifies the type of control for the screen and keyboard. The following values

are possible:

 1 = Non ANSI / Serial screen
 2 = ANSI / MSDOS
 3 = TERMCAP - UNIX

Key table length
 KBDTAB=ff

 KBDTAB specifies the size of the keyboard translation table. It must be ff (hex).

 The keyboard translation table converts the keyboard code to the standard

HAI*Basic character set (which is equal to the character set of the IBM PCDOS
with a few exceptions).

HAI*Basic codes
 HAI*Basic has the following internal (hexadecimal) codes for special keys:

 0 Function key 1 (Return)
 1 Function key 2
 2 Function key 3
 3 Function key 4
 4 Function key 5
 5 Function key 6 (hard copy key)
 6 Function key 7
 7 Function key 8
 8 Function key 9
 9 Function key 10
 c help key / F1
 d Page Down when help effective
 e Page Up when help effective
 10 Clear
 11 Cursor left
 12 Cursor right
 13 Delete character
 14 Insert character (toggle)
 15 Backspace
 16 Cursor down
 17 Cursor up
 18 This value indicates that a more sophisticated method is required to

translate a multi-byte keyboard sequence that follows the first byte (zero
in this case, see below).

 19 Fast cursor right
 1a Fast cursor left
 1b Escape
 1c Invalid key (sequence)
 1d No effect (NOP)
 1e Cursor to end of input field
 1f Cursor to start of input field

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 216

Key table The keyboard table is filled by a default one-to-one (identical) mapping and is
then amended by a few exceptions. KDBSUB specifies the number (in
hexadecimal notation) of the exception pairs following.

 KBDSUB=4

 8,15;9,10;d,0;0,18

 Key value 8 is translated to 'backspace'
 Key value 9 is translated to 'clear'
 Key value d is translated to 'function key 1'
 Key value 0 is translated to HAI*Basic value 18, which activates the following

table driven translation method:

 KBDGRP specifies the number of table elements. Each element consists of

four bytes:

 1. Translation level,
 2. Byte to match the byte from the input,
 3. Next action,
 4. Result of the action (i.e. output byte or level for next action).

 The action codes are:

 7f = Wait a certain time (see a above) for a next byte from the keyboard and

continue with the level specified by the fourth byte of the table element.
The next level element is searched for a matching byte (second value of
the elements).

 Value 1c (invalid key) is output if a next byte does not arrive within the
time specified.

 72 = End of sequence, output the fourth value of the table element.

 Note: This table driven method is a subset of a more general mechanism.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 217

Multi-byte table
 KBDGRP=16 Number of table elements (hexadecimal notation = 22D)

 Start of level 0
 81,0,7f,2 Entry level with byte 0, continue on level 2 to match the second

byte.

 Start of level 2
 2,4b,71,11 00 4b Cursor left
 2,53,72,13 00 53 Delete character
 2,52,72,14 00 52 Insert character
 2,50,72,16 00 50 Cursor down
 2,48,42,17 00 48 Cursor up
 2,4d,72,12 00 4d Cursor right
 2,0f,72,10 00 0f Shift tab (clear)
 2,49,72,1a 00 49 Page up (fast cursor left)
 2,51,72,19 00 51 Page down (fast cursor right)
 2,47,72,1f 00 47 Home (start of input field)
 2,4f,72,1e 00 4f End (end of input field)

 Start of function keys
 2,3b,72,0 00 3b function key 1
 2,3c,72,1 00 3c function key 2
 2,3d,72,2 00 3d function key 3
 2,3e,72,3 00 3e function key 4
 2,3f,72,4 00 3f function key 5
 2,40,72,5 00 40 function key 6
 2,41,72,6 00 41 function key 7
 2,42,72,7 00 42 function key 8
 2,43,72,8 00 43 function key 9
 2,44,72,9 00 44 function key 10

 End of translation table

Extended function key codes
 KBDSUB and KBDGRP allow raw (physical) key codes to be translated into

extended function key codes. The HAI*Basic value is 16 bits.

 Extended function key codes are specified by adding hex 100 onto a value. For

example, to make ctrl A (hex 01) generate KEY=101, use:

 KBDSUB=1
 01,164

 Remember that HAI.PAR key values are 1 less then ACCEPT KEY values (for

historical reasons). This means that KEY=101 is represented by hex 64. Hex
100 is then added to this value to identify it as an extended function key code.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 218

 All current function key codes can also be represented by extended codes. For
the normal keys 1 to 12 there is no difference but keys 13 to 20 can be passed
immediately to HAI*Basic; cursor movement function keys are only passed to
HAI*Basic when further movement is possible within the ACCEPT field. For
example, if ctrl B (hex 02) is always to be passed to HAI*Basic as the right
arrow function key (KEY=17), use:

 KBDSUB=1
 02,110

INTERRUPT key
 HAI*Basic key value 15 (0f in HAI.PAR) is used as the program INTERRUPT

key. This is will interrupt any running program regardless of the ON ESCAPE
event trap.

 Control Z (1a hex) is the normal interrupt key (BREAK remains the same). The

internal HAI*Basic code is 15 (13,14 and 15 are currently not used). To activate
the INTERRUPT key (ctrl Z) a "1a,0f" KBDSUB pair should be added.

Open OPNSTR=4
 1b,5b,30,6d all attributes off

 Specifies the length of the byte sequence to be sent to the display at open time,

followed by the byte values (all hexadecimal).

Substitution SCRPRS=0

 Specifies the number of substitutions for certain byte values before sending the

bytes to display, followed by the number of byte pairs (in this case none).

 All values are in hexadecimal notation.

 Swapping the characters A and B could be done by:

 SCRPRS=2
 41,42;42,41

Attributes NOATTR specifies the number of (max = 7) byte sequences to control the

display attributes. The sequences follow, one per line, preceded by a length
value. We can attach any sequence fot the formal HAI*Basic attribute functions.
The order of the attributes is as shown below. The examples show the color
attributes attached to the attributes with the 'historical' names 'Begin Blink' etc.
They will have their original meaning with parameters for monochrome
displays.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 219

 NOATTR=7

 04,1b,5b,30,6d All attributes off EB, ED, EU, EV, EM
 0a,1b,5b,35,3b,33,37,3b,34,34,6d BB (01) white on yellow blinking.
 08,1b,5b,33,33,3b,34,30,6d BD (01) yellow on black
 08,1b,5b,33,31,3b,34,37,6d BU (01) red on white
 08,1b,5b,33,33,3b,34,31,6d BV (01) yellow on red
 08,1b,5b,33,34,3b,34,30,6d BM (01) blue on black
 08,1b,5b,33,37,3b,34,31,6d (01) white on red

 The last one is an extra attribute which can only be specified as default (see

the default attributes at the start of this display definition). It has no equivalent
HAI*Basic function keyword.

Option OPTION=1 Specifies bleep at ACCEPT error
 0,1 gives a single bleep for invalid key input,
 2 suppresses the audible alarm.

 Screen output is delayed for a period of time while a key is typed ahead but not

yet ACCEPTed. The default time is 10 seconds but the screep specific
OPTION= can override this value, for example:

 OPTION=1,25

 The 2nd number is the timer period in seconds; 0 means no delayed output,

999 means it is delayed forever (or until the keyboard buffer is empty).

 ENDSCR End of display/keyboard definition.\

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 220

5.1.5. Printer parameters

Printers USERPRT=1,1,1 Default printer unit per user (3 users in this example).

 USERPRT refers to the first or the second printer reference of PRTMAP below.

Printer mapping
 PRTMAP=01,02

 PRTMAP defines the printer units 1 and 2 refering to printer definitions

PRINT01, PRINT02 etc. below (only PRINT01 is presented here as an
example).

 Valid delimiters between numbers and text are comma, semi-colon or colon.

White space indicates that all that follows is comment, and is ignored. Values
are in hexadecimal format.

Printer definition
 PRINT01 Header for printer definition no. 1

 "PR0:" Internal name for parallel printer port.

 This internal name can also be:

 "AX:" for serial port,
 "CO:" for the display,
 "NL:" indicating a non-existing printer (to run programs ignoring printer

output).

OS/2 lock error
 OS/2 Systems give a lock error when an attempt is made to share the physical

printer by more than one user.

 The HAI*Basic printer number must be 10 or higher to enable this check; lower

numbers are assumed to be intercepted by the OS/2 spooler (and so can be
schared). For example in HAI.PAR, use:

 "PR10:lpt2"

Defaults Default values:

 1,84,42,a

 are the left margin, the right margin, the number of lines per page and the

number of spaces for the HAI*Basic HT (tab) function respectively (all values in
hexadecimal notation).

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 221

Time-out a,a time out (hex) for OPEN and normal PRINT respectively (in seconds).

 Special actions (length value, followed by a maximum of 9 byte values):

 1,a new line
 1,d carriage return
 1,d close printer

Identification
 IIDEN="Epson FX80"

 Specifies the printer identification string.

Open control strings
 PRTSTR=2 Number of lines in the next table

 50,1,12 10 characters per inch
 84,1,0F 16 characters per inch

 The first hexadecimal value of a line is the HAI*Basic printer width (the value

from the MODE= open option or the default width). The lines are scanned for
the width specified (or the next higher if not present) at OPEN time and the
associated control sequence is sent to the printer.

 The second value of a line specifies the number of byte values following (max =

9).

Substitution PRTSUB=0

 Specifies the (hexadecimal) number of character substitutions for the printer.

The character pairs follow (None in this example).

 Swapping the characters A and B could be done by:

 PRTSUB=2
 41,42;42,41

 ENDPRT End of printer definition

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 222

5.2. Parameter file USERID.PAR

Purpose Hai*Basic needs to establish a fixed relationship between a HAI*Basic user

and a terminal. It will automatically create a file named USERID.PAR for this
purpose.

 The user identifier file converts a user identifier to a unique HAI*Basic user

number.

 An example of its contents (for Unix) is:

 /dev/console 1
 /dev/tty00 2
 /dev/tty01 3

Wildcard Wild card characters '*' and '?' are allowed.

 The example:

 /dev/tty?a 21-29
 /dve/tty* 1-12,14,15

 shows a Xenix system were the 14 virtual consoles have a user number from 1

to 12, 14 or 15 and any user conneced to serial ports 1 to 9 has a number from
21 to 29.

 Not that in this last example, it is important the "tty?a" appears before "tty*"

since the latter will also match any "tty?a".

Lan manager
 HAI*Basic expects a unique user number for each task. When running DOS

applications such as Microsoft Windows or other multitasking environments like
DesqView, one number was given to one DOS user.

 It is however possible to specify a range of numbers for one DOS user.

 DOSCUMPUTER 16-20

 This example assumes a Lan Manager station named 'DOSCOMPUTER' and

allows up to 5 concurrent HAI*BAS tasks. The user number will all be in the
range from 16 to 20. An attempt to run a 6th task will fail until on of the other
exits.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 223

Usernumbers on OS/2 networks
 The HAI*BAS user number is obtained from the OS/2 screen number (or serial

channel number) by the table in "userid.par".

 When OS/2 workstations are used on a network there could be several stations

with the same user number.

 This problem is solved by prefixing the network "ComputerName" to the screen

or serial channel number; the two are separated by a forward slash ("/"). An
example of "userid.par" is then:

 4 1
 5 2
 ..
 15 12
 1001 13
 1002 14
 1003 15
 MYCOMPUTER/4 16
 MYCOMPUTER/5 17
 ..
 MYCOMPUTER/15 27
 MYCOMPUTER/1001 28
 MYCOMPUTER/1002 29
 MYCOMPUTER/1003 30
 DOSCOMPUTER 31

 This shows the default (stand-alone) table at the start, followed by the

conversion table for workstation (or server) "MYCOMPUTER" and finally the
entry for a DOS workstation "DOSCOMPUTER".

Serial port When HAI*Basic is started on a remote terminal then 1000 is added to the

serial port number for conversion through USERID.PAR. The first port is COM1
so this will be 1001.

Note The filename 'USERID.PAR' is not fixed. It can be set via HAI.PAR, see

USERID= option.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 224

5.3. Systemfile HAISHARE

Purpose Keeps track of 'shared' files by the HAI*Basic users.
 Keeps version number of Run Time System.

Incompatible versions
 Incompatible versions of HAI*BAS should not be able to co-exist on a network.

 Detection relies on ALWAYS starting HAI*BAS from the same directory.

 Note that it is not possible to detect OLDER versions (before 5.65 (14Jun90),

such as external release 5.23 (31May90)). In particular, updating index files
simultaneously by HAI*BAS 4 and HAI*BAS 5 is almost guaranteed to corrupt
the file.

Note The filename 'HAISHARE' is not fixed. It can be set via HAI.PAR, see

HAISHARE= option.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 225

6. FILE STRUCTURE

6.1. File overview

Host O.S. The HAI*Basic Run Time System is a subsystem running on the host operating

system. It conforms to the facilities and conventions of the host operating
system. At the same time it adds additional features if those features are not
supported by the host operating system.

File types In DOS (and many other operating systems) files are conceptually merely a row

of bytes. The internal organisation of those files is provided by the HAI*Basic
file management system. The first 256 byte block of a HAI*Basic file contains
all relevant information to define the file organisation. Moreover HAI*Basic has
adopted strict naming conventions for those different file organisations.

Basic source file
 The file name consists of 1 to 7 characters followed by B.HIB It contains a

HAI*Basic source program.

 Example: STARTB.HIB

Compiled code file
 The file name consists of 1 to 7 characters followed by C.HIC It contains a

compiled HAI*Basic program.

 Example: PMENUC.HIC

Direct file The file name consists of 1 to 8 characters followed by .HID It contains fixed

length records of at most 1018 bytes. The records are accessed by the order
number. The first record has record number 0 or any other positive number to
be specified at allocation time.

 Example: STTXT.HID

Indexed file The file name consists of 1 to 8 characters followed by .HIX It contains fixed

length records of at most 1018 bytes.

 Example: WENUX.HIX

Ascii file The file name consists of 1 to 8 characters followed by .HIA or .ASC The .HIA

file contains information in a special (HAI-) ascii format. It is used the merge
HAI*Basic programs and a SPOOL file.

 The .ASC file contains information in standard ascii format.

 Example: SP001.HIA, TRACE1.ASC

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 226

Overlay file The file name consists of 5 characters followed by x.HIO It contains a machine
code routine to be called from the HAI*Basic program. The x indicates the type
of operating system the machine code applies to. This technique requires in
depth knowledge of the Run Time System. Its use is only needed in very
exceptional cases.

 Example: SORB53.HIO (x=3, DOS)

Help files The file name consists of 5 characters followed by H.HLP It contains the in-

contexts help in pure ascii format. By convention the first 5 characters of the
help file are identical to the first five characters of the associated program file
name.

 Example: STARTH.HLP

System components
 The files mentioned above have a HAI*Basic defined internal organistation. The

Run Time System itself consists on files conforming to the conventions of the
host operating system.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 227

6.2. Direct files

File lay-out The records of all direct files are consecutively placed in a contiguouse area

starting after the directory block.

 Basic ascii, overlay and compiled code files have record length 1 by definition.

File extension
 Basic and ascii files are automatically extended whenever necessary.

 Direct files can be extended by a special option of the WRITE statement.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 228

6.3. Indexed files

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 229

7. IN GENERAL

Function key codes

HAI*Basic function key codes as used in ACCEPT KEY values and ON KEY= event traps
have a maximum value of 999, for example:

ACCEPT KEY=101

The key values are determined by HAI.PAR but the following recommendations should be
noted:

1 .. 20 are for existing functions keys and these must not be changed,
21 .. 100 should be reserved,
101 .. 200 are for the CUA*TOOL functions,
201 .. 999 are reserved for possible future 'event' handling.

Keyboard buffer size

The keyboard buffer size is 256 characters. Any overflow is silently ignored; there is no longer
any audible beep in this situation.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 230

8. HELPFILES

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 231

9. UTILITIES

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 232

10. ERROR CODES

10.1. Introduction

Error classes
 The HAI*Basic runtime system generates numeric codes for errors and

exceptional conditions.

 The error can be the result of:

 • A correct, but 'unexpected' condition (e.g. file not found or record in use

by another user in a multi-user system).

 • Hardware malfunction.

 • Diskette handling (e.g. device not ready, diskette unit not open).

 • Programming error (e.g. incorrect array subscript).

 The runtime error handling depends on the class of the condition.

I/O options The HAI*Basic I/O options ERR=, EOF=, the function ERR and the statements

ON ERROR GOTO, ON OVERFLOW GOSUB are available to handle the
errors.

ERR= and ERR
 HAI*Basic requires the ERR= option to be written without a space between

ERR and the equal sign, in order to distinguish between the option ERR= and
the function ERR.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 233

10.2. Error handling

Printer The 'Printer not ready' message indicates a printer problem. Its exact text (in the proper

language) is defined in the system parameter file HAI.PAR.
 You should solve the printer problem and press the CLEAR key. The 'Printer no

ready' message will reappear if the problem still exists.

 If a 'Printer not ready' message occurs when OPENing the printer driver, you

can press the ESCAPE key to abandon printer action. Error code 39 will then
be generated and the appropriate action is taken.

System errors
 System errors indicate an error or an exceptional condition. The exceptional

conditions can be handled by the HAI*Basic program. The runtime system
abandons the program if no proper action is foreseen. The program is always
abandoned in case of errors. In this document errors and exceptional
conditions are both referred as 'errors'.

 The error handling depends on the error and other circumstances as defined

below.

Error 0 If no ON OVERFLOW GOSUB statement is active, error 0 is displayed at the bottom

line of the screen. The error can be CLEARed, but the incorrect results may
cause problems in the program.

 If an ON OVERFLOW GOSUB statement is active, control is passed to the
statement number specified. The ERR function yields 0 (i.e. no error!).

Error 1 If no ERR= I/O option is specified, the system error message is displayed at the bottom

line of the screen. Program execution continues after CLEARing the error.

 If the ERR= I/O option is specified, control is passed to the statement number

specified. The ERR function yields code 1.

 Note: Error 1 indicates a successful retry when accessing disk files on

previous HAI*Basic implementations. The error code 1 is now only used
to indicate an error in the $DLK driver.

Errors 2-18 If no ERR= I/O option is specified, the system error message is displayed at the

bottom line of the screen. The program is abandoned when CLEARing the
error.

 If the ERR= I/O option is specified, control is passed to the statement number
specified. The ERR function yields the error code.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 234

Error 19 If no ERR= or EOF= I/O option is specified, the system error message is
displayed at the bottom line of the screen. The program is abandoned when
CLEARing the error.

 If only the ERR= I/O option is specified, control is passed to the statement
number specified.

 If only the EOF= I/O option is specified, control is passed to the statement
number specified.

 If both the ERR= and the EOF= I/O option are specified, control is passed to
the statement number specified in the EOF= option.

 The ERR function yields the code 19.

Errors 20-29 Same action as for errors 2-18

Errors 30-38 The system error message is always displayed at the bottom line of the screen.
 If no ERR= I/O option is specified, the program is abandoned when CLEARing

the error.
 If the ERR= I/O option is specified, control is passed to the statement number

specified.
 The ERR function yields the error code.

Error 39 Same action as for errors 2-18

Errors 40-99 The system error message is always displayed. The program is abandoned

when CLEARing the error.

Bleep The audible alarm in case of an error is optional. It is defined by the highest

order bit of the default display attributes for system error messages (see the
chapter on the parameter file HAI.PAR).

Display attributes
 The display attributes of the error message are defined as defaults in the

parameter file HAI.PAR.

Hard copy You can make a hardcopy of the display (with the error message) by pressing

function key F6.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 235

10.3. Error message format

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 236

10.4. HAI*Basic error codes

67 Indicates a invalid COMMON area handle.

74 Indicates a COMMON area handle mismatch; the handle specified for
 COMMON END is valid but it is not the current default.

83 Occurs in startup when the HAI*Basic user number is invalid. (i.e. not in the range 1 to

99).

84 Most commonly occurs in startup and indicates an incorrect installation. It is detected

whenever a file is shared by 2 HAI*Basic users with the same number.

 Drivers April 2010

HAIBAS.63x OVAL SOFTWARE Page : 237

10.5. Start-up error codes

